BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

239 related articles for article (PubMed ID: 27080439)

  • 1. Third generation poly(hydroxyacid) composite scaffolds for tissue engineering.
    Goonoo N; Bhaw-Luximon A; Passanha P; Esteves SR; Jhurry D
    J Biomed Mater Res B Appl Biomater; 2017 Aug; 105(6):1667-1684. PubMed ID: 27080439
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Endothelial differentiation of human stem cells seeded onto electrospun polyhydroxybutyrate/polyhydroxybutyrate-co-hydroxyvalerate fiber mesh.
    Zonari A; Novikoff S; Electo NR; Breyner NM; Gomes DA; Martins A; Neves NM; Reis RL; Goes AM
    PLoS One; 2012; 7(4):e35422. PubMed ID: 22523594
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Polyhydroxybutyrate (PHB) in nanoparticulate form improves physical and biological performance of scaffolds.
    Dhania S; Bernela M; Rani R; Parsad M; Kumar R; Thakur R
    Int J Biol Macromol; 2023 May; 236():123875. PubMed ID: 36870657
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Piezoelectric 3-D Fibrous Poly(3-hydroxybutyrate)-Based Scaffolds Ultrasound-Mineralized with Calcium Carbonate for Bone Tissue Engineering: Inorganic Phase Formation, Osteoblast Cell Adhesion, and Proliferation.
    Chernozem RV; Surmeneva MA; Shkarina SN; Loza K; Epple M; Ulbricht M; Cecilia A; Krause B; Baumbach T; Abalymov AA; Parakhonskiy BV; Skirtach AG; Surmenev RA
    ACS Appl Mater Interfaces; 2019 May; 11(21):19522-19533. PubMed ID: 31058486
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Emerging bone tissue engineering via Polyhydroxyalkanoate (PHA)-based scaffolds.
    Lim J; You M; Li J; Li Z
    Mater Sci Eng C Mater Biol Appl; 2017 Oct; 79():917-929. PubMed ID: 28629097
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Physico-chemical and in vitro cellular properties of different calcium phosphate-bioactive glass composite chitosan-collagen (CaP@ChiCol) for bone scaffolds.
    Mooyen S; Charoenphandhu N; Teerapornpuntakit J; Thongbunchoo J; Suntornsaratoon P; Krishnamra N; Tang IM; Pon-On W
    J Biomed Mater Res B Appl Biomater; 2017 Oct; 105(7):1758-1766. PubMed ID: 27184456
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bioglass® 45S5-based composites for bone tissue engineering and functional applications.
    Rizwan M; Hamdi M; Basirun WJ
    J Biomed Mater Res A; 2017 Nov; 105(11):3197-3223. PubMed ID: 28686004
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modified poly(3-hydroxybutyrate)-based scaffolds in tissue engineering applications: A review.
    Soleymani Eil Bakhtiari S; Karbasi S; Toloue EB
    Int J Biol Macromol; 2021 Jan; 166():986-998. PubMed ID: 33152357
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preparation of dexamethasone-loaded biphasic calcium phosphate nanoparticles/collagen porous composite scaffolds for bone tissue engineering.
    Chen Y; Kawazoe N; Chen G
    Acta Biomater; 2018 Feb; 67():341-353. PubMed ID: 29242161
    [TBL] [Abstract][Full Text] [Related]  

  • 10. PHBV wet-spun scaffold coated with ELR-REDV improves vascularization for bone tissue engineering.
    Alagoz AS; Rodriguez-Cabello JC; Hasirci V
    Biomed Mater; 2018 Jul; 13(5):055010. PubMed ID: 29974870
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biocompatibility of polyhydroxyalkanoate as a potential material for ligament and tendon scaffold material.
    Rathbone S; Furrer P; Lübben J; Zinn M; Cartmell S
    J Biomed Mater Res A; 2010 Jun; 93(4):1391-403. PubMed ID: 19911384
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A comparison study between electrospun polycaprolactone and piezoelectric poly(3-hydroxybutyrate-co-3-hydroxyvalerate) scaffolds for bone tissue engineering.
    Gorodzha SN; Muslimov AR; Syromotina DS; Timin AS; Tcvetkov NY; Lepik KV; Petrova AV; Surmeneva MA; Gorin DA; Sukhorukov GB; Surmenev RA
    Colloids Surf B Biointerfaces; 2017 Dec; 160():48-59. PubMed ID: 28917149
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 3D printed polymer-mineral composite biomaterials for bone tissue engineering: Fabrication and characterization.
    Babilotte J; Guduric V; Le Nihouannen D; Naveau A; Fricain JC; Catros S
    J Biomed Mater Res B Appl Biomater; 2019 Nov; 107(8):2579-2595. PubMed ID: 30848068
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multifunctional biomaterials from the sea: Assessing the effects of chitosan incorporation into collagen scaffolds on mechanical and biological functionality.
    Raftery RM; Woods B; Marques ALP; Moreira-Silva J; Silva TH; Cryan SA; Reis RL; O'Brien FJ
    Acta Biomater; 2016 Oct; 43():160-169. PubMed ID: 27402181
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrospun oriented gelatin-hydroxyapatite fiber scaffolds for bone tissue engineering.
    Salifu AA; Lekakou C; Labeed FH
    J Biomed Mater Res A; 2017 Jul; 105(7):1911-1926. PubMed ID: 28263431
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improved vascularisation but inefficient in vivo bone regeneration of adipose stem cells and poly-3-hydroxybutyrate-co-3-hydroxyvalerate scaffolds in xeno-free conditions.
    Paula ACC; Carvalho PH; Martins TMM; Boeloni JN; Cunha PS; Novikoff S; Correlo VM; Reis RL; Goes AM
    Mater Sci Eng C Mater Biol Appl; 2020 Feb; 107():110301. PubMed ID: 31761156
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biosilica incorporated 3D porous scaffolds for bone tissue engineering applications.
    Tamburaci S; Tihminlioglu F
    Mater Sci Eng C Mater Biol Appl; 2018 Oct; 91():274-291. PubMed ID: 30033256
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design and evaluation of chitosan/chondroitin sulfate/nano-bioglass based composite scaffold for bone tissue engineering.
    Singh BN; Veeresh V; Mallick SP; Jain Y; Sinha S; Rastogi A; Srivastava P
    Int J Biol Macromol; 2019 Jul; 133():817-830. PubMed ID: 31002908
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Highly porous PHB-based bioactive scaffolds for bone tissue engineering by in situ synthesis of hydroxyapatite.
    Degli Esposti M; Chiellini F; Bondioli F; Morselli D; Fabbri P
    Mater Sci Eng C Mater Biol Appl; 2019 Jul; 100():286-296. PubMed ID: 30948063
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preparation and properties of dopamine-modified alginate/chitosan-hydroxyapatite scaffolds with gradient structure for bone tissue engineering.
    Shi D; Shen J; Zhang Z; Shi C; Chen M; Gu Y; Liu Y
    J Biomed Mater Res A; 2019 Aug; 107(8):1615-1627. PubMed ID: 30920134
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.