These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 27080676)

  • 21. The role of carrier spectral composition in the perception of musical pitch.
    Kuo CY; Liu JW; Wang CH; Juan CH; Hsieh IH
    Atten Percept Psychophys; 2023 Aug; 85(6):2083-2099. PubMed ID: 37479873
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Evidence against an effect of grouping by spectral regularity on the perception of virtual pitch.
    Ciocca V
    J Acoust Soc Am; 1999 Nov; 106(5):2746-51. PubMed ID: 10573890
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Spectro-temporal templates unify the pitch percepts of resolved and unresolved harmonics.
    Shamma S; Dutta K
    J Acoust Soc Am; 2019 Feb; 145(2):615. PubMed ID: 30823787
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Perceptual learning of fundamental frequency discrimination: effects of fundamental frequency, harmonic number, and component phase.
    Miyazono H; Glasberg BR; Moore BC
    J Acoust Soc Am; 2010 Dec; 128(6):3649-57. PubMed ID: 21218897
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Resolvability of components in complex tones and implications for theories of pitch perception.
    Moore BC; Gockel HE
    Hear Res; 2011 Jun; 276(1-2):88-97. PubMed ID: 21236327
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Modulation rate discrimination for unresolved components: temporal cues related to fine structure and envelope.
    Hall JW; Buss E; Grose JH
    J Acoust Soc Am; 2003 Feb; 113(2):986-93. PubMed ID: 12597192
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Dual-pitch processing mechanisms in primate auditory cortex.
    Bendor D; Osmanski MS; Wang X
    J Neurosci; 2012 Nov; 32(46):16149-61. PubMed ID: 23152599
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Learning Pitch with STDP: A Computational Model of Place and Temporal Pitch Perception Using Spiking Neural Networks.
    Erfanian Saeedi N; Blamey PJ; Burkitt AN; Grayden DB
    PLoS Comput Biol; 2016 Apr; 12(4):e1004860. PubMed ID: 27049657
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Frequency-dependent fine structure in the frequency-following response: The byproduct of multiple generators.
    Tichko P; Skoe E
    Hear Res; 2017 May; 348():1-15. PubMed ID: 28137699
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Moderate cochlear hearing loss leads to a reduced ability to use temporal fine structure information.
    Hopkins K; Moore BC
    J Acoust Soc Am; 2007 Aug; 122(2):1055-68. PubMed ID: 17672653
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Discrimination of complex tones with unresolved components using temporal fine structure information.
    Moore BC; Hopkins K; Cuthbertson S
    J Acoust Soc Am; 2009 May; 125(5):3214-22. PubMed ID: 19425664
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The role of excitation-pattern, temporal-fine-structure, and envelope cues in the discrimination of complex tones.
    Jackson HM; Moore BC
    J Acoust Soc Am; 2014 Mar; 135(3):1356-70. PubMed ID: 24606274
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Listening experience with iterated rippled noise alters the perception of 'pitch' strength of complex sounds in the chinchilla.
    Shofner WP; Whitmer WM; Yost WA
    J Acoust Soc Am; 2005 Nov; 118(5):3187-97. PubMed ID: 16334899
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Enhancing and unmasking the harmonics of a complex tone.
    Hartmann WM; Goupell MJ
    J Acoust Soc Am; 2006 Oct; 120(4):2142-57. PubMed ID: 17069312
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The upper frequency limit for the use of phase locking to code temporal fine structure in humans: A compilation of viewpoints.
    Verschooten E; Shamma S; Oxenham AJ; Moore BCJ; Joris PX; Heinz MG; Plack CJ
    Hear Res; 2019 Jun; 377():109-121. PubMed ID: 30927686
    [TBL] [Abstract][Full Text] [Related]  

  • 36. ARTSTREAM: a neural network model of auditory scene analysis and source segregation.
    Grossberg S; Govindarajan KK; Wyse LL; Cohen MA
    Neural Netw; 2004 May; 17(4):511-36. PubMed ID: 15109681
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effects of signal envelope on the pitch of short sinusoidal tones.
    Rossing TD; Houtsma AJ
    J Acoust Soc Am; 1986 Jun; 79(6):1926-33. PubMed ID: 3722602
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Pitch matches between unresolved complex tones differing by a single interpulse interval.
    Plack CJ; White LJ
    J Acoust Soc Am; 2000 Aug; 108(2):696-705. PubMed ID: 10955636
    [TBL] [Abstract][Full Text] [Related]  

  • 39. How independent are the pitch and interaural-time-difference mechanisms that rely on temporal fine structure information?
    Furukawa S; Washizawa S; Ochi A; Kashino M
    Adv Exp Med Biol; 2013; 787():91-9. PubMed ID: 23716213
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Electrophysiological and behavioural processing of complex acoustic cues.
    Mathew AK; Purdy SC; Welch D; Pontoppidan NH; Rønne FM
    Clin Neurophysiol; 2016 Jan; 127(1):779-789. PubMed ID: 25921025
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.