These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 27080684)

  • 1. Speech Coding in the Midbrain: Effects of Sensorineural Hearing Loss.
    Carney LH; Kim DO; Kuwada S
    Adv Exp Med Biol; 2016; 894():427-435. PubMed ID: 27080684
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of sensorineural hearing loss on formant-frequency discrimination: Measurements and models.
    Carney LH; Cameron DA; Kinast KB; Feld CE; Schwarz DM; Leong UC; McDonough JM
    Hear Res; 2023 Aug; 435():108788. PubMed ID: 37224720
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Supra-Threshold Hearing and Fluctuation Profiles: Implications for Sensorineural and Hidden Hearing Loss.
    Carney LH
    J Assoc Res Otolaryngol; 2018 Aug; 19(4):331-352. PubMed ID: 29744729
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Robust Rate-Place Coding of Resolved Components in Harmonic and Inharmonic Complex Tones in Auditory Midbrain.
    Su Y; Delgutte B
    J Neurosci; 2020 Mar; 40(10):2080-2093. PubMed ID: 31996454
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Speech Coding in the Brain: Representation of Vowel Formants by Midbrain Neurons Tuned to Sound Fluctuations.
    Carney LH; Li T; McDonough JM
    eNeuro; 2015; 2(4):. PubMed ID: 26464993
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Midbrain Synchrony to Envelope Structure Supports Behavioral Sensitivity to Single-Formant Vowel-Like Sounds in Noise.
    Henry KS; Abrams KS; Forst J; Mender MJ; Neilans EG; Idrobo F; Carney LH
    J Assoc Res Otolaryngol; 2017 Feb; 18(1):165-181. PubMed ID: 27766433
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of sensorineural hearing loss on temporal coding of narrowband and broadband signals in the auditory periphery.
    Henry KS; Heinz MG
    Hear Res; 2013 Sep; 303():39-47. PubMed ID: 23376018
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Human Frequency Following Response: Neural Representation of Envelope and Temporal Fine Structure in Listeners with Normal Hearing and Sensorineural Hearing Loss.
    Ananthakrishnan S; Krishnan A; Bartlett E
    Ear Hear; 2016; 37(2):e91-e103. PubMed ID: 26583482
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nonlinear auditory models yield new insights into representations of vowels.
    Carney LH; McDonough JM
    Atten Percept Psychophys; 2019 May; 81(4):1034-1046. PubMed ID: 30565098
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Speech enhancement for listeners with hearing loss based on a model for vowel coding in the auditory midbrain.
    Rao A; Carney LH
    IEEE Trans Biomed Eng; 2014 Jul; 61(7):2081-91. PubMed ID: 24686228
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Responses to speech signals in the normal and pathological peripheral auditory system.
    Palmer AR; Moorjani PA
    Prog Brain Res; 1993; 97():107-15. PubMed ID: 8234737
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Excitatory, inhibitory and facilitatory frequency response areas in the inferior colliculus of hearing impaired mice.
    Felix RA; Portfors CV
    Hear Res; 2007 Jun; 228(1-2):212-29. PubMed ID: 17412539
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Brainstem auditory responses to resolved and unresolved harmonics of a synthetic vowel in quiet and noise.
    Laroche M; Dajani HR; Prévost F; Marcoux AM
    Ear Hear; 2013; 34(1):63-74. PubMed ID: 22814487
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sensitivity to Frequency Modulation is Limited Centrally.
    Whiteford KL; Oxenham AJ
    J Neurosci; 2023 May; 43(20):3687-3695. PubMed ID: 37028932
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Plasticity of response properties of inferior colliculus neurons following acute cochlear damage.
    Wang J; Salvi RJ; Powers N
    J Neurophysiol; 1996 Jan; 75(1):171-83. PubMed ID: 8822550
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computational model predictions of cues for concurrent vowel identification.
    Chintanpalli A; Ahlstrom JB; Dubno JR
    J Assoc Res Otolaryngol; 2014 Oct; 15(5):823-37. PubMed ID: 25002128
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrically evoked amplitude modulation following response in cochlear implant candidates: comparison with auditory nerve response telemetry, subjective electrical stimulation, and speech perception.
    Hirschfelder A; Gräbel S; Olze H
    Otol Neurotol; 2012 Aug; 33(6):968-75. PubMed ID: 22772009
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrical cochlear stimulation in the deaf cat: comparisons between psychophysical and central auditory neuronal thresholds.
    Beitel RE; Snyder RL; Schreiner CE; Raggio MW; Leake PA
    J Neurophysiol; 2000 Apr; 83(4):2145-62. PubMed ID: 10758124
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of aging, hearing loss, and anatomical location on thresholds of inferior colliculus neurons in C57BL/6 and CBA mice.
    Willott JF
    J Neurophysiol; 1986 Aug; 56(2):391-408. PubMed ID: 3760927
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Temporal coding of envelopes and their interaural delays in the inferior colliculus of the unanesthetized rabbit.
    Batra R; Kuwada S; Stanford TR
    J Neurophysiol; 1989 Feb; 61(2):257-68. PubMed ID: 2918354
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.