These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

545 related articles for article (PubMed ID: 27081073)

  • 21. Activating an adaptive immune response from a hydrogel scaffold imparts regenerative wound healing.
    Griffin DR; Archang MM; Kuan CH; Weaver WM; Weinstein JS; Feng AC; Ruccia A; Sideris E; Ragkousis V; Koh J; Plikus MV; Di Carlo D; Segura T; Scumpia PO
    Nat Mater; 2021 Apr; 20(4):560-569. PubMed ID: 33168979
    [TBL] [Abstract][Full Text] [Related]  

  • 22. In vivo xenogeneic scaffold fate is determined by residual antigenicity and extracellular matrix preservation.
    Wong ML; Wong JL; Vapniarsky N; Griffiths LG
    Biomaterials; 2016 Jun; 92():1-12. PubMed ID: 27031928
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Applications of biomaterials for immunosuppression in tissue repair and regeneration.
    Shen P; Chen Y; Luo S; Fan Z; Wang J; Chang J; Deng J
    Acta Biomater; 2021 May; 126():31-44. PubMed ID: 33722787
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Engineering the regenerative microenvironment with biomaterials.
    Rice JJ; Martino MM; De Laporte L; Tortelli F; Briquez PS; Hubbell JA
    Adv Healthc Mater; 2013 Jan; 2(1):57-71. PubMed ID: 23184739
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Precisely defined fiber scaffolds with 40 μm porosity induce elongation driven M2-like polarization of human macrophages.
    Tylek T; Blum C; Hrynevich A; Schlegelmilch K; Schilling T; Dalton PD; Groll J
    Biofabrication; 2020 Feb; 12(2):025007. PubMed ID: 31805543
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Proteomic composition and immunomodulatory properties of urinary bladder matrix scaffolds in homeostasis and injury.
    Sadtler K; Sommerfeld SD; Wolf MT; Wang X; Majumdar S; Chung L; Kelkar DS; Pandey A; Elisseeff JH
    Semin Immunol; 2017 Feb; 29():14-23. PubMed ID: 28583764
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Tissue engineering and regenerative medicine approaches to enhance the functional response to skeletal muscle injury.
    Sicari BM; Dearth CL; Badylak SF
    Anat Rec (Hoboken); 2014 Jan; 297(1):51-64. PubMed ID: 24293290
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Dendritic cells in host response to biologic scaffolds.
    Leifer CA
    Semin Immunol; 2017 Feb; 29():41-48. PubMed ID: 28214177
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Monocytes and macrophages in tissue repair: Implications for immunoregenerative biomaterial design.
    Ogle ME; Segar CE; Sridhar S; Botchwey EA
    Exp Biol Med (Maywood); 2016 May; 241(10):1084-97. PubMed ID: 27229903
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Scaffold-Mediated Immunoengineering as Innovative Strategy for Tendon Regeneration.
    Russo V; El Khatib M; Prencipe G; Cerveró-Varona A; Citeroni MR; Mauro A; Berardinelli P; Faydaver M; Haidar-Montes AA; Turriani M; Di Giacinto O; Raspa M; Scavizzi F; Bonaventura F; Liverani L; Boccaccini AR; Barboni B
    Cells; 2022 Jan; 11(2):. PubMed ID: 35053383
    [TBL] [Abstract][Full Text] [Related]  

  • 31. EH Networks as a scaffold for skeletal muscle regeneration in abdominal wall hernia repair.
    Falco EE; Roth JS; Fisher JP
    J Surg Res; 2008 Sep; 149(1):76-83. PubMed ID: 18395749
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Biomaterial-Assisted Regenerative Medicine.
    Nii T; Katayama Y
    Int J Mol Sci; 2021 Aug; 22(16):. PubMed ID: 34445363
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Chitosan and Its Potential Use as a Scaffold for Tissue Engineering in Regenerative Medicine.
    Rodríguez-Vázquez M; Vega-Ruiz B; Ramos-Zúñiga R; Saldaña-Koppel DA; Quiñones-Olvera LF
    Biomed Res Int; 2015; 2015():821279. PubMed ID: 26504833
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Hemodynamic loads distinctively impact the secretory profile of biomaterial-activated macrophages - implications for in situ vascular tissue engineering.
    Wissing TB; van Haaften EE; Koch SE; Ippel BD; Kurniawan NA; Bouten CVC; Smits AIPM
    Biomater Sci; 2019 Dec; 8(1):132-147. PubMed ID: 31709425
    [TBL] [Abstract][Full Text] [Related]  

  • 35. From repair to regeneration: biomaterials to reprogram the meniscus wound microenvironment.
    Mauck RL; Burdick JA
    Ann Biomed Eng; 2015 Mar; 43(3):529-42. PubMed ID: 25650096
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Biologic scaffolds for musculotendinous tissue repair.
    Turner NJ; Badylak SF
    Eur Cell Mater; 2013 Jan; 25():130-43. PubMed ID: 23329468
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Regulatory T-Cells: Potential Regulator of Tissue Repair and Regeneration.
    Li J; Tan J; Martino MM; Lui KO
    Front Immunol; 2018; 9():585. PubMed ID: 29662491
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Immunoengineering Biomaterials for Musculoskeletal Tissue Repair across Lifespan.
    Han J; Rindone AN; Elisseeff JH
    Adv Mater; 2024 Jul; 36(28):e2311646. PubMed ID: 38416061
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Harnessing macrophage plasticity for tissue regeneration.
    Smith TD; Nagalla RR; Chen EY; Liu WF
    Adv Drug Deliv Rev; 2017 May; 114():193-205. PubMed ID: 28449872
    [TBL] [Abstract][Full Text] [Related]  

  • 40. mTOR is necessary for proper satellite cell activity and skeletal muscle regeneration.
    Zhang P; Liang X; Shan T; Jiang Q; Deng C; Zheng R; Kuang S
    Biochem Biophys Res Commun; 2015 Jul 17-24; 463(1-2):102-8. PubMed ID: 25998386
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 28.