These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

78 related articles for article (PubMed ID: 27081192)

  • 1. Beyond the Mean: Biological Impacts of Cryptic Temperature Change.
    Sheldon KS; Dillon ME
    Integr Comp Biol; 2016 Jul; 56(1):110-9. PubMed ID: 27081192
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Temperature Sensitivity of Fitness Components across Life Cycles Drives Insect Responses to Climate Change.
    Johnson CA; Ren R; Buckley LB
    Am Nat; 2023 Dec; 202(6):753-766. PubMed ID: 38033177
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Integrating water balance mechanisms into predictions of insect responses to climate change.
    Sinclair BJ; Saruhashi S; Terblanche JS
    J Exp Biol; 2024 May; 227(10):. PubMed ID: 38779934
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Systematic approaches to assessing high-temperature limits to fertility in animals.
    Bretman A; Fricke C; Baur J; Berger D; Breedveld MC; Dierick D; Canal Domenech B; Drobniak SM; Ellers J; English S; Gasparini C; Iossa G; Lagisz M; Nakagawa S; Noble DWA; Pottier P; Ramm SA; Rowe M; Schultner E; Schou M; Simões P; Stockley P; Vasudeva R; Weaving H; Price TAR; Snook RR
    J Evol Biol; 2024 Apr; 37(4):471-485. PubMed ID: 38350467
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The importance of fat accumulation and reserves for insect overwintering.
    Enriquez T; Visser B
    Curr Opin Insect Sci; 2023 Dec; 60():101118. PubMed ID: 37739063
    [TBL] [Abstract][Full Text] [Related]  

  • 6. How development and survival combine to determine the thermal sensitivity of insects.
    Abarca M; Parker AL; Larsen EA; Umbanhowar J; Earl C; Guralnick R; Kingsolver J; Ries L
    PLoS One; 2024; 19(1):e0291393. PubMed ID: 38289939
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cross-talk between low temperature and other environmental factors.
    Boardman L
    Curr Opin Insect Sci; 2024 Jun; 63():101193. PubMed ID: 38490451
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Heatwaves are detrimental to fertility in the viviparous tsetse fly.
    Weaving H; Terblanche JS; English S
    Proc Biol Sci; 2024 Mar; 291(2018):20232710. PubMed ID: 38471560
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of temperature on metabolic rate during metamorphosis in the alfalfa leafcutting bee.
    Earls KN; Campbell JB; Rinehart JP; Greenlee KJ
    Biol Open; 2023 Dec; 12(12):. PubMed ID: 38156711
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Infection burdens and virulence under heat stress: ecological and evolutionary considerations.
    Hector TE; Gehman AM; King KC
    Philos Trans R Soc Lond B Biol Sci; 2023 Mar; 378(1873):20220018. PubMed ID: 36744570
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A transportable temperature and heatwave control device (TENTACLE) for laboratory and field simulations of different climate change scenarios in aquatic micro- and mesocosms.
    Hermann M; Jansen R; van de Glind J; Peeters ETHM; Van den Brink PJ
    HardwareX; 2022 Apr; 11():e00307. PubMed ID: 35518280
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fertility and mortality impacts of thermal stress from experimental heatwaves on different life stages and their recovery in a model insect.
    Sales K; Vasudeva R; Gage MJG
    R Soc Open Sci; 2021 Mar; 8(3):201717. PubMed ID: 33959335
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Using naturalistic incubation temperatures to demonstrate how variation in the timing and continuity of heat wave exposure influences phenotype.
    Breitenbach AT; Carter AW; Paitz RT; Bowden RM
    Proc Biol Sci; 2020 Aug; 287(1932):20200992. PubMed ID: 32752987
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microclimate buffering and thermal tolerance across elevations in a tropical butterfly.
    Montejo-Kovacevich G; Martin SH; Meier JI; Bacquet CN; Monllor M; Jiggins CD; Nadeau NJ
    J Exp Biol; 2020 Apr; 223(Pt 8):. PubMed ID: 32165433
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lifetime eurythermy by seasonally matched thermal performance of developmental stages in an annual aquatic insect.
    Uno H; Stillman JH
    Oecologia; 2020 Mar; 192(3):647-656. PubMed ID: 31989318
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Increased Suitability of Poleward Climate for a Tropical Butterfly (Euripus nyctelius) (Lepidoptera: Nymphalidae) Accompanies its Successful Range Expansion.
    Au TF; Bonebrake TC
    J Insect Sci; 2019 Nov; 19(6):. PubMed ID: 31703123
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Challenges to natural and human communities from surprising ocean temperatures.
    Pershing AJ; Record NR; Franklin BS; Kennedy BT; McClenachan L; Mills KE; Scott JD; Thomas AC; Wolff NH
    Proc Natl Acad Sci U S A; 2019 Sep; 116(37):18378-18383. PubMed ID: 31383753
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermal landscape change as a driver of ectotherm responses to plant invasions.
    Garcia RA; Clusella-Trullas S
    Proc Biol Sci; 2019 Jun; 286(1905):20191020. PubMed ID: 31238850
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Devil is in the Details: Identifying Aspects of Temperature Variation that Underlie Sex Determination in Species with TSD.
    Carter AW; Paitz RT; Bowden RM
    Integr Comp Biol; 2019 Oct; 59(4):1081-1088. PubMed ID: 31095337
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Trait variation in extreme thermal environments under constant and fluctuating temperatures.
    Salinas S; Irvine SE; Schertzing CL; Golden SQ; Munch SB
    Philos Trans R Soc Lond B Biol Sci; 2019 Mar; 374(1768):20180177. PubMed ID: 30966956
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.