These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 27081192)

  • 41. Temperatures and the growth and development of maize and rice: a review.
    Sánchez B; Rasmussen A; Porter JR
    Glob Chang Biol; 2014 Feb; 20(2):408-17. PubMed ID: 24038930
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Sensitivity to thermal extremes in Australian Drosophila implies similar impacts of climate change on the distribution of widespread and tropical species.
    Overgaard J; Kearney MR; Hoffmann AA
    Glob Chang Biol; 2014 Jun; 20(6):1738-50. PubMed ID: 24549716
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Climate heterogeneity modulates impact of warming on tropical insects.
    Bonebrake TC; Deutsch CA
    Ecology; 2012 Mar; 93(3):449-55. PubMed ID: 22624199
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Scaling from Metabolism to Population Growth Rate to Understand How Acclimation Temperature Alters Thermal Performance.
    Luhring TM; DeLong JP
    Integr Comp Biol; 2017 Jul; 57(1):103-111. PubMed ID: 28662571
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Realised rather than fundamental thermal niches predict site occupancy: Implications for climate change forecasting.
    Braschler B; Duffy GA; Nortje E; Kritzinger-Klopper S; du Plessis D; Karenyi N; Leihy RI; Chown SL
    J Anim Ecol; 2020 Dec; 89(12):2863-2875. PubMed ID: 32981063
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Temperature extremes: geographic patterns, recent changes, and implications for organismal vulnerabilities.
    Buckley LB; Huey RB
    Glob Chang Biol; 2016 Dec; 22(12):3829-3842. PubMed ID: 27062158
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The evolution of insect body coloration under changing climates.
    Clusella-Trullas S; Nielsen M
    Curr Opin Insect Sci; 2020 Oct; 41():25-32. PubMed ID: 32629405
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Thermal performance under constant temperatures can accurately predict insect development times across naturally variable microclimates.
    von Schmalensee L; Hulda Gunnarsdóttir K; Näslund J; Gotthard K; Lehmann P
    Ecol Lett; 2021 Aug; 24(8):1633-1645. PubMed ID: 34036719
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Maize growing duration was prolonged across China in the past three decades under the combined effects of temperature, agronomic management, and cultivar shift.
    Tao F; Zhang S; Zhang Z; Rötter RP
    Glob Chang Biol; 2014 Dec; 20(12):3686-99. PubMed ID: 25044728
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Insects in fluctuating thermal environments.
    Colinet H; Sinclair BJ; Vernon P; Renault D
    Annu Rev Entomol; 2015 Jan; 60():123-40. PubMed ID: 25341105
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Paradoxical acclimation responses in the thermal performance of insect immunity.
    Ferguson LV; Heinrichs DE; Sinclair BJ
    Oecologia; 2016 May; 181(1):77-85. PubMed ID: 26846428
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Evolution of thermal performance curves: A meta-analysis of selection experiments.
    Malusare SP; Zilio G; Fronhofer EA
    J Evol Biol; 2023 Jan; 36(1):15-28. PubMed ID: 36129955
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Phenology-dependent cold exposure and thermal performance of Ostrinia nubilalis ecotypes.
    Wadsworth CB; Okada Y; Dopman EB
    BMC Evol Biol; 2020 Mar; 20(1):34. PubMed ID: 32138649
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Mutualism meltdown in insects: bacteria constrain thermal adaptation.
    Wernegreen JJ
    Curr Opin Microbiol; 2012 Jun; 15(3):255-62. PubMed ID: 22381679
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The mean and variance of environmental temperature interact to determine physiological tolerance and fitness.
    Bozinovic F; Bastías DA; Boher F; Clavijo-Baquet S; Estay SA; Angilletta MJ
    Physiol Biochem Zool; 2011; 84(6):543-52. PubMed ID: 22030847
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Extinction risks forced by climatic change and intraspecific variation in the thermal physiology of a tropical lizard.
    Pontes-da-Silva E; Magnusson WE; Sinervo B; Caetano GH; Miles DB; Colli GR; Diele-Viegas LM; Fenker J; Santos JC; Werneck FP
    J Therm Biol; 2018 Apr; 73():50-60. PubMed ID: 29549991
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Thermal reactionomes reveal divergent responses to thermal extremes in warm and cool-climate ant species.
    Stanton-Geddes J; Nguyen A; Chick L; Vincent J; Vangala M; Dunn RR; Ellison AM; Sanders NJ; Gotelli NJ; Cahan SH
    BMC Genomics; 2016 Mar; 17():171. PubMed ID: 26934985
    [TBL] [Abstract][Full Text] [Related]  

  • 58. CERES-Maize model-based simulation of climate change impacts on maize yields and potential adaptive measures in Heilongjiang Province, China.
    Lin Y; Wu W; Ge Q
    J Sci Food Agric; 2015 Nov; 95(14):2838-49. PubMed ID: 25428548
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Mechanistic simulations predict that thermal and hydrological effects of climate change on Mediterranean trout cannot be offset by adaptive behaviour, evolution, and increased food production.
    Ayllón D; Railsback SF; Harvey BC; García Quirós I; Nicola GG; Elvira B; Almodóvar A
    Sci Total Environ; 2019 Nov; 693():133648. PubMed ID: 31634990
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Microhabitats reduce animal's exposure to climate extremes.
    Scheffers BR; Edwards DP; Diesmos A; Williams SE; Evans TA
    Glob Chang Biol; 2014 Feb; 20(2):495-503. PubMed ID: 24132984
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.