These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

89 related articles for article (PubMed ID: 2708148)

  • 1. Transient responses to tone bursts.
    Lewis ER; Henry KR
    Hear Res; 1989 Feb; 37(3):219-39. PubMed ID: 2708148
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cochlear nerve responses to waveform singularities and envelope corners.
    Lewis ER; Henry KR
    Hear Res; 1989 May; 39(1-2):209-24. PubMed ID: 2737967
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Antimasking effects of the olivocochlear reflex. II. Enhancement of auditory-nerve response to masked tones.
    Kawase T; Delgutte B; Liberman MC
    J Neurophysiol; 1993 Dec; 70(6):2533-49. PubMed ID: 8120597
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Compound action potential offset and onset tuning curves generated by simultaneous masking in the mongolian gerbil. Effects of varying the intensity of the probe stimulus from 55 to 85 dB SPL.
    Henry KR
    Hear Res; 1987; 30(1):49-54. PubMed ID: 3680053
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synaptic events and discharge patterns of cochlear nucleus cells. I. Steady-frequency tone bursts.
    Britt R; Starr A
    J Neurophysiol; 1976 Jan; 39(1):162-78. PubMed ID: 1249600
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The frequency selectivity of auditory nerve fibres and hair cells in the cochlea of the turtle.
    Crawford AC; Fettiplace R
    J Physiol; 1980 Sep; 306():79-125. PubMed ID: 7463380
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Receptor potentials of lizard cochlear hair cells with free-standing stereocilia in response to tones.
    Holton T; Weiss TF
    J Physiol; 1983 Dec; 345():205-40. PubMed ID: 6663499
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Offset AP masker tuning curve and the FFT of the stimulus.
    Henry KR; Lewis ER
    J Acoust Soc Am; 1988 Oct; 84(4):1354-62. PubMed ID: 3198871
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Frequency selectivity of single cochlear-nerve fibers based on the temporal response pattern to two-tone signals.
    Greenberg S; Geisler CD; Deng L
    J Acoust Soc Am; 1986 Apr; 79(4):1010-9. PubMed ID: 3700856
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Low-frequency bias tone suppression of auditory-nerve responses to low-level clicks and tones.
    Nam H; Guinan JJ
    Hear Res; 2016 Nov; 341():66-78. PubMed ID: 27550413
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Response characteristics in the apex of the gerbil cochlea studied through auditory nerve recordings.
    Versteegh CP; Meenderink SW; van der Heijden M
    J Assoc Res Otolaryngol; 2011 Jun; 12(3):301-16. PubMed ID: 21213012
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tone-burst and click-evoked otoacoustic emissions in subjects with hearing loss above 0.25, 0.5, and 1 kHz.
    Jedrzejczak WW; Kochanek K; Trzaskowski B; Pilka E; Skarzynski PH; Skarzynski H
    Ear Hear; 2012; 33(6):757-67. PubMed ID: 22710662
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The envelope following response (EFR) in the Mongolian gerbil to sinusoidally amplitude-modulated signals in the presence of simultaneously gated pure tones.
    Dolphin WF; Mountain DC
    J Acoust Soc Am; 1993 Dec; 94(6):3215-26. PubMed ID: 8300956
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The human frequency-following response: its behavior during continuous tone and tone burst stimulation.
    Glaser EM; Suter CM; Dasheiff R; Goldberg A
    Electroencephalogr Clin Neurophysiol; 1976 Jan; 40(1):25-32. PubMed ID: 55345
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Latency of unit responses in cochlear nucleus determined in two different ways.
    Moller AR
    J Neurophysiol; 1975 Jul; 38(4):812-21. PubMed ID: 1159467
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Responses of neurons in the rat's ventral nucleus of the lateral lemniscus to amplitude-modulated tones.
    Zhang H; Kelly JB
    J Neurophysiol; 2006 Dec; 96(6):2905-14. PubMed ID: 16928797
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On the existence in human auditory pathways of channels selectively tuned to the modulation present in frequency-modulated tones.
    Kay RH; Matthews DR
    J Physiol; 1972 Sep; 225(3):657-77. PubMed ID: 5076392
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Responses of primary auditory fibers to brief tone bursts.
    Geisler CD; Sinex DG
    J Acoust Soc Am; 1982 Sep; 72(3):781-94. PubMed ID: 7130537
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-synchrony cochlear compound action potentials evoked by rising frequency-swept tone bursts.
    Shore SE; Nuttall AL
    J Acoust Soc Am; 1985 Oct; 78(4):1286-95. PubMed ID: 3840500
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Frequency dependence of synchronization of cochlear nerve fibers in the alligator lizard: evidence for a cochlear origin of timing and non-timing neural pathways.
    Rose C; Weiss TF
    Hear Res; 1988 May; 33(2):151-65. PubMed ID: 3397325
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.