These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 2708153)

  • 1. Autoregulation of cochlear blood flow in normotensive and spontaneously hypertensive rats following intracerebroventricularly mediated adjustment of blood pressure.
    Quirk WS; Dengerink HA; Harding JW; Bademian MJ; Swanson SJ; Wright JW
    Hear Res; 1989 Mar; 38(1-2):119-23. PubMed ID: 2708153
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Angiotensin II-induced changes in cochlear blood flow and blood pressure in normotensive and spontaneously hypertensive rats.
    Quirk WS; Wright JW; Dengerink HA; Miller JM
    Hear Res; 1988 May; 33(2):129-35. PubMed ID: 3294222
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cochlear blood flow autoregulation in Wistar-Kyoto rats.
    Quirk WS; Dengerink HA; Coleman JK; Wright JW
    Hear Res; 1989 Aug; 41(1):53-60. PubMed ID: 2793614
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exaggerated tubuloglomerular feedback activity in genetic hypertension is mediated by ANG II and AT1 receptors.
    Brännström K; Morsing P; Arendshorst WJ
    Am J Physiol; 1996 May; 270(5 Pt 2):F749-55. PubMed ID: 8928835
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of prolonged infusion and withdrawal of angiotensin II in the spontaneously hypertensive rat.
    Chiu EK; McNeill JR
    Can J Physiol Pharmacol; 1986 Jun; 64(6):748-50. PubMed ID: 3756627
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effects of pentoxifylline on cochlear blood flow in normotensive and spontaneously hypertensive rats.
    Quirk WS; Dengerink HA; Bademian MJ; Hall KW; Wright JW
    Hear Res; 1988 Nov; 36(2-3):175-80. PubMed ID: 3209490
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Angiotensin II receptor antagonist CV-11974 and cerebral blood flow autoregulation.
    Vraamark T; Waldemar G; Strandgaard S; Paulson OB
    J Hypertens; 1995 Jul; 13(7):755-61. PubMed ID: 7594439
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Arteriolar and systemic autoregulatory responses during the development of hypertension in the spontaneously hypertensive rat.
    Alson RL; Dusseau JW; Hutchins PM
    Proc Soc Exp Biol Med; 1985 Oct; 180(1):62-71. PubMed ID: 4034536
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mannitol and dextran increase cochlear blood flow in normotensive and spontaneously hypertensive rats.
    Quirk WS; Dengerink HA; Bademian MJ; Wright JW
    Acta Otolaryngol; 1990; 109(5-6):383-8. PubMed ID: 1694386
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Renal vascular responses to angiotensin II in conscious spontaneously hypertensive and normotensive rats.
    Kost CK; Li P; Williams DS; Jackson EK
    J Cardiovasc Pharmacol; 1998 Jun; 31(6):854-61. PubMed ID: 9641469
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tissue angiotensin II and endothelin-1 modulate differently the response to flow in mesenteric resistance arteries of normotensive and spontaneously hypertensive rats.
    Matrougui K; Lévy BI; Henrion D
    Br J Pharmacol; 2000 Jun; 130(3):521-6. PubMed ID: 10821779
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced in vivo responsiveness of presynaptic angiotensin II receptor-mediated facilitation of vascular adrenergic neurotransmission in spontaneously hypertensive rats.
    Cline WH
    J Pharmacol Exp Ther; 1985 Mar; 232(3):661-9. PubMed ID: 2983066
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Angiotensin II AT(1) blockade normalizes cerebrovascular autoregulation and reduces cerebral ischemia in spontaneously hypertensive rats.
    Nishimura Y; Ito T; Saavedra JM
    Stroke; 2000 Oct; 31(10):2478-86. PubMed ID: 11022082
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Potentiation of pressor response to angiotensin II at the preoptic area in spontaneously hypertensive rat.
    Matsuda T; Shibata K; Abe M; Tomonaga M; Furukawa T
    Life Sci; 1987 Aug; 41(6):749-54. PubMed ID: 3613838
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regional cerebral blood flow autoregulation in normotensive and spontaneously hypertensive rats--effects of sympathetic denervation.
    Sadoshima S; Fujii K; Yao H; Kusuda K; Ibayashi S; Fujishima M
    Stroke; 1986; 17(5):981-4. PubMed ID: 3764971
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of nitric oxide in the autoregulation of renal blood flow and glomerular filtration rate in aging spontaneously hypertensive rats.
    Kvam FI; Ofstad J; Iversen BM
    Kidney Blood Press Res; 2000; 23(6):376-84. PubMed ID: 11070417
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced angiotensin-mediated facilitation of adrenergic neurotransmission in spontaneously hypertensive rats.
    Kawasaki H; Cline WH; Su C
    J Pharmacol Exp Ther; 1982 Apr; 221(1):112-6. PubMed ID: 6278133
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Vasodilation mediated by angiotensin II type 2 receptor is impaired in afferent arterioles of young spontaneously hypertensive rats.
    Endo Y; Arima S; Yaoita H; Tsunoda K; Omata K; Ito S
    J Vasc Res; 1998; 35(6):421-7. PubMed ID: 9858867
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of anterior hypothalamic angiotensin II in the pathogenesis of salt sensitive hypertension in the spontaneously hypertensive rat.
    Oparil S; Yang RH; Jin HG; Chen SJ; Meng QC; Berecek KH; Wyss JM
    Am J Med Sci; 1994 Feb; 307 Suppl 1():S26-37. PubMed ID: 8141161
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Angiotensin II-induced changes in G-protein expression and resistance of renal microvessels in young genetically hypertensive rats.
    Vyas SJ; Blaschak CM; Chinoy MR; Jackson EK
    Mol Cell Biochem; 2000 Sep; 212(1-2):121-9. PubMed ID: 11108143
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.