These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 2708162)

  • 1. Functional role of the olivo-cochlear bundle: a motor unit control system in the mammalian cochlea.
    LePage EL
    Hear Res; 1989 Apr; 38(3):177-98. PubMed ID: 2708162
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The alteration of the vibration of the basilar membrane produced by loud sound.
    Patuzzi R; Johnstone BM; Sellick PM
    Hear Res; 1984 Jan; 13(1):99-100. PubMed ID: 6706867
    [No Abstract]   [Full Text] [Related]  

  • 3. A comparison between basilar membrane and inner hair cell receptor potential input-output functions in the guinea pig cochlea.
    Patuzzi R; Sellick PM
    J Acoust Soc Am; 1983 Dec; 74(6):1734-41. PubMed ID: 6655131
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Frequency-dependent self-induced bias of the basilar membrane and its potential for controlling sensitivity and tuning in the mammalian cochlea.
    LePage EL
    J Acoust Soc Am; 1987 Jul; 82(1):139-54. PubMed ID: 3624635
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inner hair cell responses to the velocity of basilar membrane motion in the guinea pig.
    Nuttall AL; Brown MC; Masta RI; Lawrence M
    Brain Res; 1981 Apr; 211(1):171-4. PubMed ID: 7225832
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of modulation of basilar membrane position on the cochlear microphonic.
    Pierson M; Møller A
    Hear Res; 1980 Mar; 2(2):151-62. PubMed ID: 7364670
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The physics of hearing: fluid mechanics and the active process of the inner ear.
    Reichenbach T; Hudspeth AJ
    Rep Prog Phys; 2014 Jul; 77(7):076601. PubMed ID: 25006839
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Wever and Lawrence revisited: effects of nulling basilar membrane movement on concomitant whole-nerve action potential.
    Offut G
    J Aud Res; 1986 Jan; 26(1):43-54. PubMed ID: 3610990
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Timing of spike initiation in cochlear afferents: dependence on site of innervation.
    Ruggero MA; Rich NC
    J Neurophysiol; 1987 Aug; 58(2):379-403. PubMed ID: 3655874
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The responses of inner hair cells to basilar membrane velocity during low frequency auditory stimulation in the guinea pig cochlea.
    Sellick PM; Russell IJ
    Hear Res; 1980 Jun; 2(3-4):439-45. PubMed ID: 7410248
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A model of the effect of outer hair cell motility on cochlear vibrations.
    Geisler CD
    Hear Res; 1986; 24(2):125-31. PubMed ID: 3771375
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Measurement of basilar membrane motion in the guinea pig using the Mössbauer technique.
    Sellick PM; Patuzzi R; Johnstone BM
    J Acoust Soc Am; 1982 Jul; 72(1):131-41. PubMed ID: 7108035
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The location of the cochlear amplifier: spatial representation of a single tone on the guinea pig basilar membrane.
    Russell IJ; Nilsen KE
    Proc Natl Acad Sci U S A; 1997 Mar; 94(6):2660-4. PubMed ID: 9122252
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison between the tuning properties of inner hair cells and basilar membrane motion.
    Sellick PM; Patuzzi R; Johnstone BM
    Hear Res; 1983 Apr; 10(1):93-100. PubMed ID: 6841280
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Timing of cochlear feedback: spatial and temporal representation of a tone across the basilar membrane.
    Nilsen KE; Russell IJ
    Nat Neurosci; 1999 Jul; 2(7):642-8. PubMed ID: 10404197
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Low-frequency characteristics of intracellularly recorded receptor potentials in guinea-pig cochlear hair cells.
    Russell IJ; Sellick PM
    J Physiol; 1983 May; 338():179-206. PubMed ID: 6875955
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Velocity and displacement coupling of mammalian inner hair cells and the mechanical resonance of the free-standing stereocilia.
    Patuzzi R; Yates GK
    ORL J Otorhinolaryngol Relat Spec; 1986; 48(2):81-6. PubMed ID: 3703534
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cochlear frequency sharpening-a new synthesis.
    Manley GA
    Acta Otolaryngol; 1978; 85(3-4):167-79. PubMed ID: 636866
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A model of cochlear mechanics with outer hair cell motility.
    Neely ST
    J Acoust Soc Am; 1993 Jul; 94(1):137-46. PubMed ID: 8354757
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Separate mechanical processes underlie fast and slow effects of medial olivocochlear efferent activity.
    Cooper NP; Guinan JJ
    J Physiol; 2003 Apr; 548(Pt 1):307-12. PubMed ID: 12611913
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.