These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 2708166)

  • 1. Behavior of spontaneous otoacoustic emissions following intense ipsilateral acoustic stimulation.
    Norton SJ; Mott JB; Champlin CA
    Hear Res; 1989 Apr; 38(3):243-58. PubMed ID: 2708166
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Changes in spontaneous otoacoustic emissions produced by acoustic stimulation of the contralateral ear.
    Mott JB; Norton SJ; Neely ST; Warr WB
    Hear Res; 1989 Apr; 38(3):229-42. PubMed ID: 2708165
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Manifestations of intense noise stimulation on spontaneous otoacoustic emission and threshold microstructure: experiment and model.
    Furst M; Reshef I; Attias J
    J Acoust Soc Am; 1992 Feb; 91(2):1003-14. PubMed ID: 1313463
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Distortion product otoacoustic emissions created through the interaction of spontaneous otoacoustic emissions and externally generated tones.
    Norrix LW; Glattke TJ
    J Acoust Soc Am; 1996 Aug; 100(2 Pt 1):945-55. PubMed ID: 8759948
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of contralateral acoustic stimulation on spontaneous otoacoustic emissions.
    Harrison WA; Burns EM
    J Acoust Soc Am; 1993 Nov; 94(5):2649-58. PubMed ID: 8270741
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Concurrent Acoustic Activation of the Medial Olivocochlear System Modifies the After-Effects of Intense Low-Frequency Sound on the Human Inner Ear.
    Kugler K; Wiegrebe L; Gürkov R; Krause E; Drexl M
    J Assoc Res Otolaryngol; 2015 Dec; 16(6):713-25. PubMed ID: 26264256
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Perceptual consequences of the interactions between spontaneous otoacoustic emissions and external tones. I. Monaural diplacusis and aftertones.
    Long G
    Hear Res; 1998 May; 119(1-2):49-60. PubMed ID: 9641318
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Frequency selectivity of the human cochlea: Suppression tuning of spontaneous otoacoustic emissions.
    Manley GA; van Dijk P
    Hear Res; 2016 Jun; 336():53-62. PubMed ID: 27139323
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Changes in human spontaneous otoacoustic emissions with contralateral acoustic stimulation].
    Kashiwamura M; Satoh N; Fukuda S; Kawanami M; Chida E; Inuyama Y
    Nihon Jibiinkoka Gakkai Kaiho; 1993 Jun; 96(6):922-30. PubMed ID: 8345399
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Low-frequency sound exposure causes reversible long-term changes of cochlear transfer characteristics.
    Drexl M; Otto L; Wiegrebe L; Marquardt T; Gürkov R; Krause E
    Hear Res; 2016 Feb; 332():87-94. PubMed ID: 26706707
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of low-frequency biasing on spontaneous otoacoustic emissions: amplitude modulation.
    Bian L; Watts KL
    J Acoust Soc Am; 2008 Feb; 123(2):887-98. PubMed ID: 18247892
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Responses of the Human Inner Ear to Low-Frequency Sound.
    Drexl M; Krause E; Gürkov R; Wiegrebe L
    Adv Exp Med Biol; 2016; 894():275-284. PubMed ID: 27080668
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Contralateral auditory stimulation and otoacoustic emissions: a review of basic data in humans.
    Collet L; Veuillet E; Moulin A; Morlet T; Giraud AL; Micheyl C; Chéry-Croze S
    Br J Audiol; 1994; 28(4-5):213-8. PubMed ID: 7735149
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of spontaneous otoacoustic emissions (SOAE) on acoustic distortion product input/output functions: does the medial efferent system act differently in the vicinity of an SOAE?
    Moulin A; Collet L; Morgon A
    Acta Otolaryngol; 1992; 112(2):210-4. PubMed ID: 1604981
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recovery time of the temporary threshold shift for delayed evoked otoacoustic emissions and tone bursts.
    Rossi G; Solero P; Rolando M; Olina M
    ORL J Otorhinolaryngol Relat Spec; 1991; 53(1):15-8. PubMed ID: 2008288
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The frequency selectivity of auditory nerve fibres and hair cells in the cochlea of the turtle.
    Crawford AC; Fettiplace R
    J Physiol; 1980 Sep; 306():79-125. PubMed ID: 7463380
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spontaneous otoacoustic emission recordings during contralateral pure-tone activation of medial olivocochlear reflex.
    Bulut E; Öztürk L
    Physiol Int; 2017 Jun; 104(2):171-182. PubMed ID: 28648121
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spontaneous otoacoustic emissions in chinchilla ear canals: correlation with histopathology and suppression by external tones.
    Clark WW; Kim DO; Zurek PM; Bohne BA
    Hear Res; 1984 Dec; 16(3):299-314. PubMed ID: 6401089
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spontaneous otoacoustic emissions in preterm neonates: prevalence and gender effects.
    Morlet T; Lapillonne A; Ferber C; Duclaux R; Sann L; Putet G; Salle B; Collet L
    Hear Res; 1995 Oct; 90(1-2):44-54. PubMed ID: 8975004
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interaction of spontaneous oto-acoustic emissions and external sounds.
    Rabinowitz WM; Widin GP
    J Acoust Soc Am; 1984 Dec; 76(6):1713-20. PubMed ID: 6520309
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.