These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

89 related articles for article (PubMed ID: 2708166)

  • 21. Voltage responses to tones of outer hair cells in the basal turn of the guinea-pig cochlea: significance for electromotility and desensitization.
    Russell IJ; Kössl M
    Proc Biol Sci; 1992 Feb; 247(1319):97-105. PubMed ID: 1349187
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Otoacoustic emissions and quinine sulfate.
    McFadden D; Pasanen EG
    J Acoust Soc Am; 1994 Jun; 95(6):3460-74. PubMed ID: 8046138
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Spontaneous otoacoustic emissions and sensori-neural hearing loss.
    Moulin A; Collet L; Delli D; Morgon A
    Acta Otolaryngol; 1991; 111(5):835-41. PubMed ID: 1759568
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effects of spontaneous otoacoustic emissions on pure-tone frequency difference limens.
    Hansen R; Santurette S; Verhulst S
    J Acoust Soc Am; 2014 Dec; 136(6):3147. PubMed ID: 25480062
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effects of lifetime noise exposure on the middle-age human auditory brainstem response, tinnitus and speech-in-noise intelligibility.
    Valderrama JT; Beach EF; Yeend I; Sharma M; Van Dun B; Dillon H
    Hear Res; 2018 Aug; 365():36-48. PubMed ID: 29913342
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Transient-evoked otoacoustic emissions as a measure of noise-induced threshold shift.
    Marshall L; Heller LM
    J Speech Lang Hear Res; 1998 Dec; 41(6):1319-34. PubMed ID: 9859887
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Aftereffects of Intense Low-Frequency Sound on Spontaneous Otoacoustic Emissions: Effect of Frequency and Level.
    Jeanson L; Wiegrebe L; Gürkov R; Krause E; Drexl M
    J Assoc Res Otolaryngol; 2017 Feb; 18(1):111-119. PubMed ID: 27761740
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Our present experience on spontaneous cochlear emissions.
    Fritze W; Köhler W
    Scand Audiol Suppl; 1986; 25():129-37. PubMed ID: 3472317
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Spontaneous otoacoustic emissions from free-standing stereovillar bundles of ten species of lizard with small papillae.
    Manley GA
    Hear Res; 2006 Feb; 212(1-2):33-47. PubMed ID: 16307854
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Amplitude modulation of DPOAEs by acoustic stimulation of the contralateral ear.
    Harrison RV; Sharma A; Brown T; Jiwani S; James AL
    Acta Otolaryngol; 2008 Apr; 128(4):404-7. PubMed ID: 18368574
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Antioxidant treatment reduces blast-induced cochlear damage and hearing loss.
    Ewert DL; Lu J; Li W; Du X; Floyd R; Kopke R
    Hear Res; 2012 Mar; 285(1-2):29-39. PubMed ID: 22326291
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Spontaneous otoacoustic emissions measured using an open ear-canal recording technique.
    Boul A; Lineton B
    Hear Res; 2010 Oct; 269(1-2):112-21. PubMed ID: 20600736
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Incidence of spontaneous otoacoustic emissions in children and infants.
    Strickland EA; Burns EM; Tubis A
    J Acoust Soc Am; 1985 Sep; 78(3):931-5. PubMed ID: 4031263
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Otoacoustic emissions from ears with spontaneous activity behave differently to those without: Stronger responses to tone bursts as well as to clicks.
    Jedrzejczak WW; Kochanek K; Skarzynski H
    PLoS One; 2018; 13(2):e0192930. PubMed ID: 29451905
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Recovery of threshold shift in hair-cell stereocilia following exposure to intense stimulation.
    Saunders JC; Flock A
    Hear Res; 1986; 23(3):233-43. PubMed ID: 3745022
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Acoustic modulation of electrically evoked distortion product otoacoustic emissions in gerbil cochlea.
    Ren T
    Neurosci Lett; 1996 Apr; 207(3):167-70. PubMed ID: 8728476
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Otoacoustic emissions and medial olivocochlear suppression during auditory recovery from acoustic trauma in humans.
    Veuillet E; Martin V; Suc B; Vesson JF; Morgon A; Collet L
    Acta Otolaryngol; 2001 Jan; 121(2):278-83. PubMed ID: 11349796
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Binaural acoustic stimulation exercises protective effects at the cochlea that mimic the effects of electrical stimulation of an auditory efferent pathway.
    Rajan R; Johnstone BM
    Brain Res; 1988 Sep; 459(2):241-55. PubMed ID: 3179705
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Efferent-mediated reduction in cochlear gain does not alter tuning estimates from stimulus-frequency otoacoustic emission group delays.
    Bhagat SP; Kilgore C
    Neurosci Lett; 2014 Jan; 559():132-5. PubMed ID: 24333175
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Growth of threshold shift in hair-cell stereocilia following overstimulation.
    Saunders JC; Canlon B; Flock A
    Hear Res; 1986; 23(3):245-55. PubMed ID: 3745023
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.