These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 27081931)

  • 1. Cold air drainage flows subsidize montane valley ecosystem productivity.
    Novick KA; Oishi AC; Miniat CF
    Glob Chang Biol; 2016 Dec; 22(12):4014-4027. PubMed ID: 27081931
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Using nocturnal cold air drainage flow to monitor ecosystem processes in complex terrain.
    Pypker TG; Unsworth MH; Mix AC; Rugh W; Ocheltree T; Alstad K; Bond BJ
    Ecol Appl; 2007 Apr; 17(3):702-14. PubMed ID: 17494390
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cold-air pools as microrefugia for ecosystem functions in the face of climate change.
    Pastore MA; Classen AT; D'Amato AW; Foster JR; Adair EC
    Ecology; 2022 Aug; 103(8):e3717. PubMed ID: 35388477
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Measurement of CO2 exchange between Boreal forest and the atmosphere.
    Black TA; Gaumont-Guay D; Jassal RS; Amiro BD; Jarvis PG; Gower ST; Kelliher FM; Dunn A; Wofsy SC
    SEB Exp Biol Ser; 2005; ():151-85. PubMed ID: 17633035
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Direct and indirect climate change effects on carbon dioxide fluxes in a thawing boreal forest-wetland landscape.
    Helbig M; Chasmer LE; Desai AR; Kljun N; Quinton WL; Sonnentag O
    Glob Chang Biol; 2017 Aug; 23(8):3231-3248. PubMed ID: 28132402
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Warmer temperatures reduce net carbon uptake, but do not affect water use, in a mature southern Appalachian forest.
    ChristopherOishi A; Miniat CF; Novick KA; Brantley ST; Vose JM; Walker JT
    Agric For Meteorol; 2018; 252():269-282. PubMed ID: 32280152
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Do dynamic global vegetation models capture the seasonality of carbon fluxes in the Amazon basin? A data-model intercomparison.
    Restrepo-Coupe N; Levine NM; Christoffersen BO; Albert LP; Wu J; Costa MH; Galbraith D; Imbuzeiro H; Martins G; da Araujo AC; Malhi YS; Zeng X; Moorcroft P; Saleska SR
    Glob Chang Biol; 2017 Jan; 23(1):191-208. PubMed ID: 27436068
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Simulation of carbon cycle in Qianyanzhou artificial masson pine forest ecosystem and sensitivity analysis of model parameters].
    Wang Y; Zhang N; Yu GR
    Ying Yong Sheng Tai Xue Bao; 2010 Jul; 21(7):1656-66. PubMed ID: 20879520
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Heat waves reduce ecosystem carbon sink strength in a Eurasian meadow steppe.
    Qu L; Chen J; Dong G; Jiang S; Li L; Guo J; Shao C
    Environ Res; 2016 Jan; 144(Pt B):39-48. PubMed ID: 26392406
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interactions among shrub cover and the soil microclimate may determine future Arctic carbon budgets.
    Cahoon SM; Sullivan PF; Shaver GR; Welker JM; Post E; Holyoak M
    Ecol Lett; 2012 Dec; 15(12):1415-22. PubMed ID: 22938383
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of eddy covariance and chamber-based methods for measuring CO2 flux in a temperate mixed forest.
    Wang M; Guan DX; Han SJ; Wu JL
    Tree Physiol; 2010 Jan; 30(1):149-63. PubMed ID: 19955193
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cold air drainage and modeled nocturnal leaf water potential in complex forested terrain.
    Hubbart JA; Kavanagh KL; Pangle R; Link T; Schotzko A
    Tree Physiol; 2007 Apr; 27(4):631-9. PubMed ID: 17242004
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Global patterns of forest autotrophic carbon fluxes.
    Banbury Morgan R; Herrmann V; Kunert N; Bond-Lamberty B; Muller-Landau HC; Anderson-Teixeira KJ
    Glob Chang Biol; 2021 Jun; 27(12):2840-2855. PubMed ID: 33651480
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The contribution of advective fluxes to net ecosystem exchange in a high-elevation, subalpine forest.
    Yi C; Anderson DE; Turnipseed AA; Burns SP; Sparks JP; Stannard DI; Monson RK
    Ecol Appl; 2008 Sep; 18(6):1379-90. PubMed ID: 18767617
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Total and component carbon fluxes of a Scots pine ecosystem from chamber measurements and eddy covariance.
    Zha T; Niinisto S; Xing Z; Wang KY; Kellomäki S; Barr AG
    Ann Bot; 2007 Feb; 99(2):345-53. PubMed ID: 17218344
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gross primary production controls the subsequent winter CO
    Zhao J; Peichl M; Öquist M; Nilsson MB
    Glob Chang Biol; 2016 Dec; 22(12):4028-4037. PubMed ID: 27038205
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Net ecosystem exchange of CO2 with rapidly changing high Arctic landscapes.
    Emmerton CA; St Louis VL; Humphreys ER; Gamon JA; Barker JD; Pastorello GZ
    Glob Chang Biol; 2016 Mar; 22(3):1185-200. PubMed ID: 26279166
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Grassland productivity and carbon sequestration in Mongolian grasslands: The underlying mechanisms and nomadic implications.
    Shao C; Chen J; Chu H; Lafortezza R; Dong G; Abraha M; Batkhishig O; John R; Ouyang Z; Zhang Y; Qi J
    Environ Res; 2017 Nov; 159():124-134. PubMed ID: 28797887
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Response of carbon uptake to abiotic and biotic drivers in an intensively managed Lei bamboo forest.
    Liu Y; Zhou G; Du H; Berninger F; Mao F; Li X; Chen L; Cui L; Li Y; Zhu D; Xu L
    J Environ Manage; 2018 Oct; 223():713-722. PubMed ID: 29975899
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rain events decrease boreal peatland net CO2 uptake through reduced light availability.
    Nijp JJ; Limpens J; Metselaar K; Peichl M; Nilsson MB; van der Zee SE; Berendse F
    Glob Chang Biol; 2015 Jun; 21(6):2309-20. PubMed ID: 25580711
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.