These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 27081984)

  • 1. Ultracold Nonreactive Molecules in an Optical Lattice: Connecting Chemistry to Many-Body Physics.
    Doçaj A; Wall ML; Mukherjee R; Hazzard KR
    Phys Rev Lett; 2016 Apr; 116(13):135301. PubMed ID: 27081984
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Creation of a low-entropy quantum gas of polar molecules in an optical lattice.
    Moses SA; Covey JP; Miecnikowski MT; Yan B; Gadway B; Ye J; Jin DS
    Science; 2015 Nov; 350(6261):659-62. PubMed ID: 26542566
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Observation of coherent quench dynamics in a metallic many-body state of fermionic atoms.
    Will S; Iyer D; Rigol M
    Nat Commun; 2015 Jan; 6():6009. PubMed ID: 25625799
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tonks-Girardeau gas of ultracold atoms in an optical lattice.
    Paredes B; Widera A; Murg V; Mandel O; Fölling S; Cirac I; Shlyapnikov GV; Hänsch TW; Bloch I
    Nature; 2004 May; 429(6989):277-81. PubMed ID: 15152247
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Observation of antiferromagnetic correlations in the Hubbard model with ultracold atoms.
    Hart RA; Duarte PM; Yang TL; Liu X; Paiva T; Khatami E; Scalettar RT; Trivedi N; Huse DA; Hulet RG
    Nature; 2015 Mar; 519(7542):211-4. PubMed ID: 25707803
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Trapping ultracold dysprosium: a highly magnetic gas for dipolar physics.
    Lu M; Youn SH; Lev BL
    Phys Rev Lett; 2010 Feb; 104(6):063001. PubMed ID: 20366817
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantum phases from competing short- and long-range interactions in an optical lattice.
    Landig R; Hruby L; Dogra N; Landini M; Mottl R; Donner T; Esslinger T
    Nature; 2016 Apr; 532(7600):476-9. PubMed ID: 27064902
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Extended Bose-Hubbard models with ultracold magnetic atoms.
    Baier S; Mark MJ; Petter D; Aikawa K; Chomaz L; Cai Z; Baranov M; Zoller P; Ferlaino F
    Science; 2016 Apr; 352(6282):201-5. PubMed ID: 27124454
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Universal ultracold collision rates for polar molecules of two alkali-metal atoms.
    Julienne PS; Hanna TM; Idziaszek Z
    Phys Chem Chem Phys; 2011 Nov; 13(42):19114-24. PubMed ID: 21773648
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dipolar collisions of polar molecules in the quantum regime.
    Ni KK; Ospelkaus S; Wang D; Quéméner G; Neyenhuis B; de Miranda MH; Bohn JL; Ye J; Jin DS
    Nature; 2010 Apr; 464(7293):1324-8. PubMed ID: 20428166
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Emergence of multi-body interactions in a fermionic lattice clock.
    Goban A; Hutson RB; Marti GE; Campbell SL; Perlin MA; Julienne PS; D'Incao JP; Rey AM; Ye J
    Nature; 2018 Nov; 563(7731):369-373. PubMed ID: 30429544
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantum Engineering of a Low-Entropy Gas of Heteronuclear Bosonic Molecules in an Optical Lattice.
    Reichsöllner L; Schindewolf A; Takekoshi T; Grimm R; Nägerl HC
    Phys Rev Lett; 2017 Feb; 118(7):073201. PubMed ID: 28256882
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Repulsively bound atom pairs in an optical lattice.
    Winkler K; Thalhammer G; Lang F; Grimm R; Denschlag JH; Daley AJ; Kantian A; Büchler HP; Zoller P
    Nature; 2006 Jun; 441(7095):853-6. PubMed ID: 16778884
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Localization of bosonic atoms by fermionic impurities in a three-dimensional optical lattice.
    Ospelkaus S; Ospelkaus C; Wille O; Succo M; Ernst P; Sengstock K; Bongs K
    Phys Rev Lett; 2006 May; 96(18):180403. PubMed ID: 16712346
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantum simulations of lattice gauge theories using ultracold atoms in optical lattices.
    Zohar E; Cirac JI; Reznik B
    Rep Prog Phys; 2016 Jan; 79(1):014401. PubMed ID: 26684222
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A quantum gas microscope for detecting single atoms in a Hubbard-regime optical lattice.
    Bakr WS; Gillen JI; Peng A; Fölling S; Greiner M
    Nature; 2009 Nov; 462(7269):74-7. PubMed ID: 19890326
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Compressibility of a fermionic mott insulator of ultracold atoms.
    Duarte PM; Hart RA; Yang TL; Liu X; Paiva T; Khatami E; Scalettar RT; Trivedi N; Hulet RG
    Phys Rev Lett; 2015 Feb; 114(7):070403. PubMed ID: 25763942
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metallic and insulating phases of repulsively interacting fermions in a 3D optical lattice.
    Schneider U; Hackermüller L; Will S; Best T; Bloch I; Costi TA; Helmes RW; Rasch D; Rosch A
    Science; 2008 Dec; 322(5907):1520-5. PubMed ID: 19056980
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultracold heteronuclear molecules in a 3D optical lattice.
    Ospelkaus C; Ospelkaus S; Humbert L; Ernst P; Sengstock K; Bongs K
    Phys Rev Lett; 2006 Sep; 97(12):120402. PubMed ID: 17025941
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Floquet Engineering of Correlated Tunneling in the Bose-Hubbard Model with Ultracold Atoms.
    Meinert F; Mark MJ; Lauber K; Daley AJ; Nägerl HC
    Phys Rev Lett; 2016 May; 116(20):205301. PubMed ID: 27258874
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.