These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 27082243)

  • 1. Mapping of Enzyme Kinetics on a Microfluidic Device.
    Rho HS; Hanke AT; Ottens M; Gardeniers H
    PLoS One; 2016; 11(4):e0153437. PubMed ID: 27082243
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of molecular confinement and crowding on horseradish peroxidase kinetics using a nanofluidic gradient mixer.
    Wichert WR; Han D; Bohn PW
    Lab Chip; 2016 Mar; 16(5):877-83. PubMed ID: 26792298
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Measurement of enzyme kinetics using a continuous-flow microfluidic system.
    Seong GH; Heo J; Crooks RM
    Anal Chem; 2003 Jul; 75(13):3161-7. PubMed ID: 12964765
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Use of chemometrics to optimize a glucose assay on a paper microfluidic platform.
    Avoundjian A; Jalali-Heravi M; Gomez FA
    Anal Bioanal Chem; 2017 Apr; 409(10):2697-2703. PubMed ID: 28150019
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Absorption detection of enzymatic reaction using optical microfluidics based intermittent flow microreactor system.
    Chandrasekaran A; Packirisamy M
    IEE Proc Nanobiotechnol; 2006 Dec; 153(6):137-43. PubMed ID: 17187445
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantitative determination of trace hydrogen peroxide in the presence of sulfide using the Amplex Red/horseradish peroxidase assay.
    Wang N; Miller CJ; Wang P; Waite TD
    Anal Chim Acta; 2017 Apr; 963():61-67. PubMed ID: 28335976
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enzymatic activity of surface-immobilized horseradish peroxidase confined to micrometer- to nanometer-scale structures in nanocapillary array membranes.
    Wang Z; King TL; Branagan SP; Bohn PW
    Analyst; 2009 May; 134(5):851-9. PubMed ID: 19381375
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An organic thin film photodiode as a portable photodetector for the detection of alkylphenol polyethoxylates by a flow fluorescence-immunoassay on magnetic microbeads in a microchannel.
    Ishimatsu R; Naruse A; Liu R; Nakano K; Yahiro M; Adachi C; Imato T
    Talanta; 2013 Dec; 117():139-45. PubMed ID: 24209322
    [TBL] [Abstract][Full Text] [Related]  

  • 9. RNA-protein binding kinetics in an automated microfluidic reactor.
    Ridgeway WK; Seitaridou E; Phillips R; Williamson JR
    Nucleic Acids Res; 2009 Nov; 37(21):e142. PubMed ID: 19759214
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enzyme reactions in nanoporous, picoliter volume containers.
    Siuti P; Retterer ST; Choi CK; Doktycz MJ
    Anal Chem; 2012 Jan; 84(2):1092-7. PubMed ID: 22148720
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thread/paper- and paper-based microfluidic devices for glucose assays employing artificial neural networks.
    Lee W; Gonzalez A; Arguelles P; Guevara R; Gonzalez-Guerrero MJ; Gomez FA
    Electrophoresis; 2018 Jun; 39(12):1443-1451. PubMed ID: 29660155
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrical, enzymatic graphene biosensing of 5-aminosalicylic acid.
    Labroo P; Cui Y
    Analyst; 2013 Mar; 138(5):1325-8. PubMed ID: 23334062
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spatial distance effect of bienzymes on the efficiency of sequential reactions in a microfluidic reactor packed with enzyme-immobilized microbeads.
    Heo J
    Anal Sci; 2014; 30(10):991-7. PubMed ID: 25312630
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microfluidic chip accomplishing self-fluid replacement using only capillary force and its bioanalytical application.
    Chung KH; Hong JW; Lee DS; Yoon HC
    Anal Chim Acta; 2007 Feb; 585(1):1-10. PubMed ID: 17386640
    [TBL] [Abstract][Full Text] [Related]  

  • 15. One-step enzyme kinetics measurement in 3D printed microfluidics devices based on a high-performance single vibrating sharp-tip mixer.
    Li X; He Z; Li C; Li P
    Anal Chim Acta; 2021 Aug; 1172():338677. PubMed ID: 34119024
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrochemical biosensors for on-chip detection of oxidative stress from cells.
    Enomoto J; Matharu Z; Revzin A
    Methods Enzymol; 2013; 526():107-21. PubMed ID: 23791096
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fluorescence quantification of intracellular materials at the single-cell level by an integrated dual-well array microfluidic device.
    Wang C; Ren L; Liu W; Wei Q; Tan M; Yu Y
    Analyst; 2019 Apr; 144(8):2811-2819. PubMed ID: 30882810
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Laser-induced mixing in microfluidic channels.
    Hellman AN; Rau KR; Yoon HH; Bae S; Palmer JF; Phillips KS; Allbritton NL; Venugopalan V
    Anal Chem; 2007 Jun; 79(12):4484-92. PubMed ID: 17508715
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Three-dimensional molecular mapping in a microfluidic mixing device using fluorescence lifetime imaging.
    Robinson T; Valluri P; Manning HB; Owen DM; Munro I; Talbot CB; Dunsby C; Eccleston JF; Baldwin GS; Neil MA; de Mello AJ; French PM
    Opt Lett; 2008 Aug; 33(16):1887-9. PubMed ID: 18709122
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A magnetically active microfluidic device for chemiluminescence bioassays.
    Zheng Y; Zhao S; Liu YM
    Analyst; 2011 Jul; 136(14):2890-2. PubMed ID: 21647506
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.