BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

258 related articles for article (PubMed ID: 27082341)

  • 1. Wavefront shaping enhanced Raman scattering in a turbid medium.
    Thompson JV; Throckmorton GA; Hokr BH; Yakovlev VV
    Opt Lett; 2016 Apr; 41(8):1769-72. PubMed ID: 27082341
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Second-harmonic focusing by a nonlinear turbid medium via feedback-based wavefront shaping.
    Qiao Y; Peng Y; Zheng Y; Ye F; Chen X
    Opt Lett; 2017 May; 42(10):1895-1898. PubMed ID: 28504753
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced coupling of light into a turbid medium through microscopic interface engineering.
    Thompson JV; Hokr BH; Kim W; Ballmann CW; Applegate BE; Jo J; Yamilov A; Cao H; Scully MO; Yakovlev VV
    Proc Natl Acad Sci U S A; 2017 Jul; 114(30):7941-7946. PubMed ID: 28701381
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Depth profiling in diffusely scattering media using Raman spectroscopy and picosecond Kerr gating.
    Matousek P; Everall N; Towrie M; Parker AW
    Appl Spectrosc; 2005 Feb; 59(2):200-5. PubMed ID: 15720761
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Active spectral filtering through turbid media.
    Park JH; Park C; Yu H; Cho YH; Park Y
    Opt Lett; 2012 Aug; 37(15):3261-3. PubMed ID: 22859152
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Non-invasive chemically selective energy delivery and focusing inside a scattering medium guided by Raman scattering.
    Tian B; Rauer B; Boniface A; Han J; Gigan S; de Aguiar HB
    Opt Lett; 2022 May; 47(9):2145-2148. PubMed ID: 35486745
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of the absorber dimensions on wavefront shaping based on volumetric optoacoustic feedback.
    Deán-Ben XL; Estrada H; Ozbek A; Razansky D
    Opt Lett; 2015 Nov; 40(22):5395-8. PubMed ID: 26565883
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-speed scattering medium characterization with application to focusing light through turbid media.
    Conkey DB; Caravaca-Aguirre AM; Piestun R
    Opt Express; 2012 Jan; 20(2):1733-40. PubMed ID: 22274516
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis and modeling of an ultrasound-modulated guide star to increase the depth of focusing in a turbid medium.
    Hollmann JL; Horstmeyer R; Yang C; DiMarzio CA
    J Biomed Opt; 2013 Feb; 18(2):25004. PubMed ID: 23400416
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Depth-resolved multimodal imaging: Wavelength modulated spatially offset Raman spectroscopy with optical coherence tomography.
    Chen M; Mas J; Forbes LH; Andrews MR; Dholakia K
    J Biophotonics; 2018 Jan; 11(1):. PubMed ID: 28703472
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Raman spectroscopy and fluorescence photon migration for breast cancer diagnosis and imaging.
    Manoharan R; Shafer K; Perelman L; Wu J; Chen K; Deinum G; Fitzmaurice M; Myles J; Crowe J; Dasari RR; Feld MS
    Photochem Photobiol; 1998 Jan; 67(1):15-22. PubMed ID: 9477761
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Technique for enhancing signal in conventional backscattering fluorescence and Raman spectroscopy of turbid media.
    Buckley K; Goodship A; Macleod NA; Parker AW; Matousek P
    Anal Chem; 2008 Aug; 80(15):6006-9. PubMed ID: 18570387
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Micro-scale spatially offset Raman spectroscopy for non-invasive subsurface analysis of turbid materials.
    Matousek P; Conti C; Realini M; Colombo C
    Analyst; 2016 Feb; 141(3):731-9. PubMed ID: 26646435
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Finite-difference time-domain analysis of increased penetration depth in optical coherence tomography by wavefront shaping.
    Kim JU; Choi H; Park Y; Shin J
    Biomed Opt Express; 2018 Aug; 9(8):3883-3897. PubMed ID: 30338162
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Raman signal enhancement via elastic light scattering.
    Hokr BH; Yakovlev VV
    Opt Express; 2013 May; 21(10):11757-62. PubMed ID: 23736397
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-speed alignment optimization of digital optical phase conjugation systems based on autocovariance analysis in conjunction with orthonormal rectangular polynomials.
    Hemphill AS; Shen Y; Hwang J; Wang LV
    J Biomed Opt; 2018 Aug; 24(3):1-11. PubMed ID: 30156064
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Polarization control of multiply scattered light through random media by wavefront shaping.
    Guan Y; Katz O; Small E; Zhou J; Silberberg Y
    Opt Lett; 2012 Nov; 37(22):4663-5. PubMed ID: 23164872
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-speed photoacoustic-guided wavefront shaping for focusing light in scattering media.
    Zhao T; Ourselin S; Vercauteren T; Xia W
    Opt Lett; 2021 Mar; 46(5):1165-1168. PubMed ID: 33649683
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reflection-mode time-reversed ultrasonically encoded optical focusing into turbid media.
    Lai P; Xu X; Liu H; Suzuki Y; Wang LV
    J Biomed Opt; 2011 Aug; 16(8):080505. PubMed ID: 21895305
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Surface-enhanced Raman scattering on single-wall carbon nanotubes.
    Kneipp K; Kneipp H; Dresselhaus MS; Lefrant S
    Philos Trans A Math Phys Eng Sci; 2004 Nov; 362(1824):2361-73. PubMed ID: 15482983
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.