These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 27082367)

  • 21. Hollow-Core Fiber-Based Biosensor: A Platform for Lab-in-Fiber Optical Biosensors for DNA Detection.
    Khozeymeh F; Melli F; Capodaglio S; Corradini R; Benabid F; Vincetti L; Cucinotta A
    Sensors (Basel); 2022 Jul; 22(14):. PubMed ID: 35890822
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Development and Characterisation of a Whole Hybrid Sol-Gel Optofluidic Platform for Biosensing Applications.
    MacHugh E; Antony G; Mallik AK; Kaworek A; McCormack D; Duffy B; Oubaha M
    Nanomaterials (Basel); 2022 Nov; 12(23):. PubMed ID: 36500816
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mass production of thin-walled hollow optical fibers enables disposable optofluidic laser immunosensors.
    Yang X; Luo Y; Liu Y; Gong C; Wang Y; Rao YJ; Peng GD; Gong Y
    Lab Chip; 2020 Mar; 20(5):923-930. PubMed ID: 32022063
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Dual-color fluorescence cross-correlation spectroscopy on a planar optofluidic chip.
    Chen A; Eberle MM; Lunt EJ; Liu S; Leake K; Rudenko MI; Hawkins AR; Schmidt H
    Lab Chip; 2011 Apr; 11(8):1502-6. PubMed ID: 21340094
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Spectroscopy of 3D-trapped particles inside a hollow-core microstructured optical fiber.
    Rajapakse C; Wang F; Tang TC; Reece PJ; Leon-Saval SG; Argyros A
    Opt Express; 2012 May; 20(10):11232-40. PubMed ID: 22565745
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Optofluidic organization and transport of cell chain.
    Liu X; Huang J; Li Y; Zhang Y; Li B
    J Biophotonics; 2017 Dec; 10(12):1627-1635. PubMed ID: 28464453
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Towards biochips using microstructured optical fiber sensors.
    Rindorf L; Høiby PE; Jensen JB; Pedersen LH; Bang O; Geschke O
    Anal Bioanal Chem; 2006 Aug; 385(8):1370-5. PubMed ID: 16761126
    [TBL] [Abstract][Full Text] [Related]  

  • 28. New optofluidic based lab-on-a-chip device for the real-time fluoride analysis.
    Bhat MP; Kurkuri M; Losic D; Kigga M; Altalhi T
    Anal Chim Acta; 2021 May; 1159():338439. PubMed ID: 33867030
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Development of an integrated direct-contacting optical-fiber microchip with light-emitting diode-induced fluorescence detection.
    Liu C; Cui D; Chen X
    J Chromatogr A; 2007 Nov; 1170(1-2):101-6. PubMed ID: 17915241
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A sequentially bioconjugated optofluidic laser for wash-out-free and rapid biomolecular detection.
    Yang X; Gong C; Wang Y; Luo Y; Rao YJ; Peng GD; Gong Y
    Lab Chip; 2021 May; 21(9):1686-1693. PubMed ID: 33949394
    [TBL] [Abstract][Full Text] [Related]  

  • 31. An optical fiber sensor for remote pH sensing and imaging.
    Wang J; Wang L
    Appl Spectrosc; 2012 Mar; 66(3):300-3. PubMed ID: 22449307
    [TBL] [Abstract][Full Text] [Related]  

  • 32. 3D-Printed micro-optofluidic device for chemical fluids and cells detection.
    Cairone F; Davi S; Stella G; Guarino F; Recca G; Cicala G; Bucolo M
    Biomed Microdevices; 2020 May; 22(2):37. PubMed ID: 32419044
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Monolithic integration of optical waveguides for absorbance detection in microfabricated electrophoresis devices.
    Mogensen KB; Petersen NJ; Hübner J; Kutter JR
    Electrophoresis; 2001 Oct; 22(18):3930-8. PubMed ID: 11700723
    [TBL] [Abstract][Full Text] [Related]  

  • 34. An Integrated Optofluidic Platform Enabling Total Phosphorus On-Chip Digestion and Online Real-Time Detection.
    Li C; Wang B; Wan H; He R; Li Q; Yang S; Dai W; Wang N
    Micromachines (Basel); 2020 Jan; 11(1):. PubMed ID: 31906410
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Optofluidic laser array based on stable high-Q Fabry-Pérot microcavities.
    Wang W; Zhou C; Zhang T; Chen J; Liu S; Fan X
    Lab Chip; 2015 Oct; 15(19):3862-9. PubMed ID: 26304622
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Single-resonator, stable dual-longitudinal-mode optofluidic microcavity laser based on a hollow-core microstructured optical fiber.
    Shi H; He J; Guo H; Liu X; Wang Z; Liu YG
    Opt Express; 2021 Mar; 29(7):10077-10088. PubMed ID: 33820142
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Optofluidic router based on tunable liquid-liquid mirrors.
    Müller P; Kopp D; Llobera A; Zappe H
    Lab Chip; 2014 Feb; 14(4):737-43. PubMed ID: 24287814
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Large mode area silicon microstructured fiber with robust dual mode guidance.
    Healy N; Sparks JR; Petrovich MN; Sazio PJ; Badding JV; Peacock AC
    Opt Express; 2009 Sep; 17(20):18076-82. PubMed ID: 19907597
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Refractometric detection of liquids using tapered optical fiber and suspended core microstructured fiber: a comparison of methods.
    Martan T; Nemecek T; Komanec M; Ahmad R; Zvanovec S
    Appl Opt; 2017 Mar; 56(9):2388-2396. PubMed ID: 28375342
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Integrated optical-fiber capillary electrophoresis microchips with novel spin-on-glass surface modification.
    Lin CH; Lee GB; Fu LM; Chen SH
    Biosens Bioelectron; 2004 Jul; 20(1):83-90. PubMed ID: 15142580
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.