These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 2708239)

  • 1. Muscle plasticity: comparison of a 30-Hz burst with 10-Hz continuous stimulation.
    Ferguson AS; Stone HE; Roessmann U; Burke M; Tisdale E; Mortimer JT
    J Appl Physiol (1985); 1989 Mar; 66(3):1143-51. PubMed ID: 2708239
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of fast and slow patterns of tonic long-term stimulation on contractile properties of fast muscle in the cat.
    Eerbeek O; Kernell D; Verhey BA
    J Physiol; 1984 Jul; 352():73-90. PubMed ID: 6747905
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of physiological amounts of high- and low-rate chronic stimulation on fast-twitch muscle of the cat hindlimb. I. Speed- and force-related properties.
    Kernell D; Eerbeek O; Verhey BA; Donselaar Y
    J Neurophysiol; 1987 Sep; 58(3):598-613. PubMed ID: 3655884
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differential effects of 10-Hz and 50 Hz-stimulation of the tibialis anterior on the ipsilateral, unstimulated soleus muscle.
    Lieber RL; Ferro TD; Hargens AR
    Exp Neurol; 1988 May; 100(2):426-35. PubMed ID: 3360078
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The role of frequency in the effects of long-term intermittent stimulation of denervated slow-twitch muscle in the rat.
    Al-Amood WS; Lewis DM
    J Physiol; 1987 Nov; 392():377-95. PubMed ID: 3446785
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of long-term electrical stimulation of rabbit fast muscles on the reactivity of their supplying arteries.
    Hudlická O; Fronek K
    J Vasc Res; 1992; 29(1):13-9. PubMed ID: 1554862
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamics of stimulation-induced muscle adaptation: insights from varying the duty cycle.
    Lopez-Guajardo A; Sutherland H; Jarvis JC; Salmons S
    J Muscle Res Cell Motil; 2000; 21(8):725-35. PubMed ID: 11392554
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Physiologic properties of contraction of the canine cremaster and cranial preputial muscles.
    Spurgeon TL; Kitchell RL; Lohse CL
    Am J Vet Res; 1978 Dec; 39(12):1884-7. PubMed ID: 749569
    [TBL] [Abstract][Full Text] [Related]  

  • 9. ATP utilization and provision in fast-twitch skeletal muscle during tetanic contractions.
    Spriet LL
    Am J Physiol; 1989 Oct; 257(4 Pt 1):E595-605. PubMed ID: 2801938
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of different patterns of long-term stimulation on blood flow, fuel uptake and enzyme activities in rabbit fast skeletal muscles.
    Hudlicka O; Aitman T; Heilig A; Leberer E; Tyler KR; Pette D
    Pflugers Arch; 1984 Nov; 402(3):306-11. PubMed ID: 6522241
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Single motor unit and fiber action potentials during fatigue.
    Sandercock TG; Faulkner JA; Albers JW; Abbrecht PH
    J Appl Physiol (1985); 1985 Apr; 58(4):1073-9. PubMed ID: 3988664
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Contractile properties of single motor units in human toe extensors assessed by intraneural motor axon stimulation.
    Macefield VG; Fuglevand AJ; Bigland-Ritchie B
    J Neurophysiol; 1996 Jun; 75(6):2509-19. PubMed ID: 8793760
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A comparison of human thenar motor-unit properties studied by intraneural motor-axon stimulation and spike-triggered averaging.
    Thomas CK; Bigland-Ritchie B; Westling G; Johansson RS
    J Neurophysiol; 1990 Oct; 64(4):1347-51. PubMed ID: 2258752
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of physiological amounts of high- and low-rate chronic stimulation on fast-twitch muscle of the cat hindlimb. II. Endurance-related properties.
    Kernell D; Donselaar Y; Eerbeek O
    J Neurophysiol; 1987 Sep; 58(3):614-27. PubMed ID: 3655885
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biomechanical comparison of stimulated and nonstimulated skeletal muscle pulled to failure.
    Garrett WE; Safran MR; Seaber AV; Glisson RR; Ribbeck BM
    Am J Sports Med; 1987; 15(5):448-54. PubMed ID: 3674268
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Blood flow in "red" and "'white" calf muscles in cats during isometric and isotonic exercise.
    Bonde-Petersen F; Robertson CH
    Acta Physiol Scand; 1981 Jul; 112(3):243-51. PubMed ID: 7293795
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Changes in tension of slow motor units in rat medial gastrocnemius during constant-rate stimulation at different frequencies.
    Celichowski J; Grottel K
    Exp Physiol; 1995 Nov; 80(6):959-67. PubMed ID: 8962710
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Induction of a fast-oxidative phenotype by chronic muscle stimulation: mechanical and biochemical studies.
    Jarvis JC; Sutherland H; Mayne CN; Gilroy SJ; Salmons S
    Am J Physiol; 1996 Jan; 270(1 Pt 1):C306-12. PubMed ID: 8772458
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The contractile properties and movement dynamics of pigeon eye muscle.
    Stelling J; McVean A
    Pflugers Arch; 1988 Aug; 412(3):314-21. PubMed ID: 3186434
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Summation of motor unit tensions in the tibialis posterior muscle of the cat under isometric and nonisometric conditions.
    Powers RK; Binder MD
    J Neurophysiol; 1991 Dec; 66(6):1838-46. PubMed ID: 1812220
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.