BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 27082842)

  • 1. Evidence of functional brain reorganization on the basis of blood flow changes in the CAG140 knock-in mouse model of Huntington's disease.
    Wang Z; Stefanko DP; Guo Y; Toy WA; Petzinger GM; Jakowec MW; Holschneider DP
    Neuroreport; 2016 Jun; 27(9):632-9. PubMed ID: 27082842
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Treadmill exercise delays the onset of non-motor behaviors and striatal pathology in the CAG
    Stefanko DP; Shah VD; Yamasaki WK; Petzinger GM; Jakowec MW
    Neurobiol Dis; 2017 Sep; 105():15-32. PubMed ID: 28502806
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recruitment of the prefrontal cortex and cerebellum in Parkinsonian rats following skilled aerobic exercise.
    Wang Z; Guo Y; Myers KG; Heintz R; Holschneider DP
    Neurobiol Dis; 2015 May; 77():71-87. PubMed ID: 25747184
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Striatal atrophy and dendritic alterations in a knock-in mouse model of Huntington's disease.
    Lerner RP; Trejo Martinez Ldel C; Zhu C; Chesselet MF; Hickey MA
    Brain Res Bull; 2012 Apr; 87(6):571-8. PubMed ID: 22326483
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of Exogenous NUB1 Expression in the Striatum of HDQ175/Q7 Mice.
    Vodicka P; Chase K; Iuliano M; Valentine DT; Sapp E; Lu B; Kegel-Gleason KB; Sena-Esteves M; Aronin N; DiFiglia M
    J Huntingtons Dis; 2016 Jun; 5(2):163-74. PubMed ID: 27314618
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Treadmill exercise rescues mitochondrial function and motor behavior in the CAG
    Caldwell CC; Petzinger GM; Jakowec MW; Cadenas E
    Chem Biol Interact; 2020 Jan; 315():108907. PubMed ID: 31778667
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Activation of NPY-Y2 receptors ameliorates disease pathology in the R6/2 mouse and PC12 cell models of Huntington's disease.
    Fatoba O; Kloster E; Reick C; Saft C; Gold R; Epplen JT; Arning L; Ellrichmann G
    Exp Neurol; 2018 Apr; 302():112-128. PubMed ID: 29309751
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Early white matter abnormalities, progressive brain pathology and motor deficits in a novel knock-in mouse model of Huntington's disease.
    Jin J; Peng Q; Hou Z; Jiang M; Wang X; Langseth AJ; Tao M; Barker PB; Mori S; Bergles DE; Ross CA; Detloff PJ; Zhang J; Duan W
    Hum Mol Genet; 2015 May; 24(9):2508-27. PubMed ID: 25609071
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Implantation of undifferentiated and pre-differentiated human neural stem cells in the R6/2 transgenic mouse model of Huntington's disease.
    El-Akabawy G; Rattray I; Johansson SM; Gale R; Bates G; Modo M
    BMC Neurosci; 2012 Aug; 13():97. PubMed ID: 22876937
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of Behavioral, Neuropathological, Brain Metabolic and Key Molecular Changes in zQ175 Knock-In Mouse Model of Huntington's Disease.
    Peng Q; Wu B; Jiang M; Jin J; Hou Z; Zheng J; Zhang J; Duan W
    PLoS One; 2016; 11(2):e0148839. PubMed ID: 26859386
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Progressive axonal transport and synaptic protein changes correlate with behavioral and neuropathological abnormalities in the heterozygous Q175 KI mouse model of Huntington's disease.
    Smith GA; Rocha EM; McLean JR; Hayes MA; Izen SC; Isacson O; Hallett PJ
    Hum Mol Genet; 2014 Sep; 23(17):4510-27. PubMed ID: 24728190
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Alterations in striatal synaptic transmission are consistent across genetic mouse models of Huntington's disease.
    Cummings DM; Cepeda C; Levine MS
    ASN Neuro; 2010 Jun; 2(3):e00036. PubMed ID: 20585470
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cortico-Striatal Cross-Frequency Coupling and Gamma Genesis Disruptions in Huntington's Disease Mouse and Computational Models.
    Naze S; Humble J; Zheng P; Barton S; Rangel-Barajas C; Rebec GV; Kozloski JR
    eNeuro; 2018; 5(6):. PubMed ID: 30627632
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sex differences in behavior and striatal ascorbate release in the 140 CAG knock-in mouse model of Huntington's disease.
    Dorner JL; Miller BR; Barton SJ; Brock TJ; Rebec GV
    Behav Brain Res; 2007 Mar; 178(1):90-7. PubMed ID: 17239451
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improvement of neuropathology and transcriptional deficits in CAG 140 knock-in mice supports a beneficial effect of dietary curcumin in Huntington's disease.
    Hickey MA; Zhu C; Medvedeva V; Lerner RP; Patassini S; Franich NR; Maiti P; Frautschy SA; Zeitlin S; Levine MS; Chesselet MF
    Mol Neurodegener; 2012 Apr; 7():12. PubMed ID: 22475209
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Correlations of Behavioral Deficits with Brain Pathology Assessed through Longitudinal MRI and Histopathology in the HdhQ150/Q150 Mouse Model of Huntington's Disease.
    Rattray I; Smith EJ; Crum WR; Walker TA; Gale R; Bates GP; Modo M
    PLoS One; 2017; 12(1):e0168556. PubMed ID: 28099507
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preconditioning mesenchymal stem cells with the mood stabilizers lithium and valproic acid enhances therapeutic efficacy in a mouse model of Huntington's disease.
    Linares GR; Chiu CT; Scheuing L; Leng Y; Liao HM; Maric D; Chuang DM
    Exp Neurol; 2016 Jul; 281():81-92. PubMed ID: 27085395
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A whole brain longitudinal study in the YAC128 mouse model of Huntington's disease shows distinct trajectories of neurochemical, structural connectivity and volumetric changes.
    Petrella LI; Castelhano JM; Ribeiro M; Sereno JV; Gonçalves SI; Laço MN; Hayden MR; Rego AC; Castelo-Branco M
    Hum Mol Genet; 2018 Jun; 27(12):2125-2137. PubMed ID: 29668904
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In Vivo Multidimensional Brain Imaging in Huntington's Disease Animal Models.
    Flament J; Hantraye P; Valette J
    Methods Mol Biol; 2018; 1780():285-301. PubMed ID: 29856025
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Age-Dependent Resistance to Excitotoxicity in Htt CAG140 Mice and the Effect of Strain Background.
    Strong MK; Southwell AL; Yonan JM; Hayden MR; Macgregor GR; Thompson LM; Steward O
    J Huntingtons Dis; 2012; 1(2):221-41. PubMed ID: 23833693
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.