These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Efficient siRNA delivery and tumor accumulation mediated by ionically cross-linked folic acid-poly(ethylene glycol)-chitosan oligosaccharide lactate nanoparticles: for the potential targeted ovarian cancer gene therapy. Li TS; Yawata T; Honke K Eur J Pharm Sci; 2014 Feb; 52():48-61. PubMed ID: 24178005 [TBL] [Abstract][Full Text] [Related]
3. Chitosan-graft-(PEI-β-cyclodextrin) copolymers and their supramolecular PEGylation for DNA and siRNA delivery. Ping Y; Liu C; Zhang Z; Liu KL; Chen J; Li J Biomaterials; 2011 Nov; 32(32):8328-41. PubMed ID: 21840593 [TBL] [Abstract][Full Text] [Related]
4. Impact of PEG Chain Length on the Physical Properties and Bioactivity of PEGylated Chitosan/siRNA Nanoparticles in Vitro and in Vivo. Yang C; Gao S; Dagnæs-Hansen F; Jakobsen M; Kjems J ACS Appl Mater Interfaces; 2017 Apr; 9(14):12203-12216. PubMed ID: 28332829 [TBL] [Abstract][Full Text] [Related]
5. Delivery of siRNA targeting tumor metabolism using non-covalent PEGylated chitosan nanoparticles: Identification of an optimal combination of ligand structure, linker and grafting method. Corbet C; Ragelle H; Pourcelle V; Vanvarenberg K; Marchand-Brynaert J; Préat V; Feron O J Control Release; 2016 Feb; 223():53-63. PubMed ID: 26699426 [TBL] [Abstract][Full Text] [Related]
6. Development and characterization of chitosan-PEG-TAT nanoparticles for the intracellular delivery of siRNA. Malhotra M; Tomaro-Duchesneau C; Saha S; Kahouli I; Prakash S Int J Nanomedicine; 2013; 8():2041-52. PubMed ID: 23723699 [TBL] [Abstract][Full Text] [Related]
7. Chitosan-based nanoparticles for survivin targeted siRNA delivery in breast tumor therapy and preventing its metastasis. Sun P; Huang W; Jin M; Wang Q; Fan B; Kang L; Gao Z Int J Nanomedicine; 2016; 11():4931-4945. PubMed ID: 27729789 [TBL] [Abstract][Full Text] [Related]
8. Chitosan-PEG nanocapsules as new carriers for oral peptide delivery. Effect of chitosan pegylation degree. Prego C; Torres D; Fernandez-Megia E; Novoa-Carballal R; Quiñoá E; Alonso MJ J Control Release; 2006 Apr; 111(3):299-308. PubMed ID: 16481062 [TBL] [Abstract][Full Text] [Related]
9. Effect of PEGylated chitosan as multifunctional stabilizer for deacetyl mycoepoxydience nanosuspension design and stability evaluation. Du J; Zhou Y; Wang L; Wang Y Carbohydr Polym; 2016 Nov; 153():471-481. PubMed ID: 27561519 [TBL] [Abstract][Full Text] [Related]
10. Chitosan nanoparticles for siRNA delivery: optimizing formulation to increase stability and efficiency. Ragelle H; Riva R; Vandermeulen G; Naeye B; Pourcelle V; Le Duff CS; D'Haese C; Nysten B; Braeckmans K; De Smedt SC; Jérôme C; Préat V J Control Release; 2014 Feb; 176():54-63. PubMed ID: 24389132 [TBL] [Abstract][Full Text] [Related]
11. Synthesis and characterization of chitosan-g-poly(ethylene glycol)-folate as a non-viral carrier for tumor-targeted gene delivery. Chan P; Kurisawa M; Chung JE; Yang YY Biomaterials; 2007 Jan; 28(3):540-9. PubMed ID: 16999995 [TBL] [Abstract][Full Text] [Related]
12. Amphipathic chitosans improve the physicochemical properties of siRNA-chitosan nanoparticles at physiological conditions. Martins GO; Segalla Petrônio M; Furuyama Lima AM; Martinez Junior AM; de Oliveira Tiera VA; de Freitas Calmon M; Leite Vilamaior PS; Han SW; Tiera MJ Carbohydr Polym; 2019 Jul; 216():332-342. PubMed ID: 31047074 [TBL] [Abstract][Full Text] [Related]
13. Receptor-mediated gene delivery by folate-poly(ethylene glycol)-grafted-trimethyl chitosan in vitro. Zheng Y; Song X; He G; Cai Z; Zhou Y; Yu B; Xu J; Wei Y; Hou S J Drug Target; 2011 Sep; 19(8):647-56. PubMed ID: 20964597 [TBL] [Abstract][Full Text] [Related]
14. Cost-effective alternative to nano-encapsulation: Amorphous curcumin-chitosan nanoparticle complex exhibiting high payload and supersaturation generation. Nguyen MH; Yu H; Kiew TY; Hadinoto K Eur J Pharm Biopharm; 2015 Oct; 96():1-10. PubMed ID: 26170159 [TBL] [Abstract][Full Text] [Related]
15. Synthesis, characterization and cytotoxicity of poly(ethylene glycol)-graft-trimethyl chitosan block copolymers. Mao S; Shuai X; Unger F; Wittmar M; Xie X; Kissel T Biomaterials; 2005 Nov; 26(32):6343-56. PubMed ID: 15913769 [TBL] [Abstract][Full Text] [Related]
18. Synthesis and characterization of pH tolerant and mucoadhesive (thiol-polyethylene glycol) chitosan graft polymer for drug delivery. Hauptstein S; Bonengel S; Griessinger J; Bernkop-Schnürch A J Pharm Sci; 2014 Feb; 103(2):594-601. PubMed ID: 24382680 [TBL] [Abstract][Full Text] [Related]
19. Influence of polyethylene glycol chain length on the physicochemical and biological properties of poly(ethylene imine)-graft-poly(ethylene glycol) block copolymer/SiRNA polyplexes. Mao S; Neu M; Germershaus O; Merkel O; Sitterberg J; Bakowsky U; Kissel T Bioconjug Chem; 2006; 17(5):1209-18. PubMed ID: 16984130 [TBL] [Abstract][Full Text] [Related]
20. Enhanced cellular uptake and gene silencing activity of siRNA molecules mediated by chitosan-derivative nanocomplexes. Guzman-Villanueva D; El-Sherbiny IM; Vlassov AV; Herrera-Ruiz D; Smyth HD Int J Pharm; 2014 Oct; 473(1-2):579-90. PubMed ID: 25063077 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]