These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
8. Fabrication of transparent and ultraviolet shielding composite films based on graphene oxide and cellulose acetate. de Moraes AC; Andrade PF; de Faria AF; Simões MB; Salomão FC; Barros EB; Gonçalves Mdo C; Alves OL Carbohydr Polym; 2015 Jun; 123():217-27. PubMed ID: 25843853 [TBL] [Abstract][Full Text] [Related]
9. Nano-gold assisted highly conducting and biocompatible bacterial cellulose-PEDOT:PSS films for biology-device interface applications. Khan S; Ul-Islam M; Ullah MW; Israr M; Jang JH; Park JK Int J Biol Macromol; 2018 Feb; 107(Pt A):865-873. PubMed ID: 28935538 [TBL] [Abstract][Full Text] [Related]
10. Engineering and Characterization of Bacterial Nanocellulose Films as Low Cost and Flexible Sensor Material. Mangayil R; Rajala S; Pammo A; Sarlin E; Luo J; Santala V; Karp M; Tuukkanen S ACS Appl Mater Interfaces; 2017 Jun; 9(22):19048-19056. PubMed ID: 28520408 [TBL] [Abstract][Full Text] [Related]
12. Novel Cu@SiO2/bacterial cellulose nanofibers: Preparation and excellent performance in antibacterial activity. Ma B; Huang Y; Zhu C; Chen C; Chen X; Fan M; Sun D Mater Sci Eng C Mater Biol Appl; 2016 May; 62():656-61. PubMed ID: 26952469 [TBL] [Abstract][Full Text] [Related]
13. Vapor phase polymerization for electronically conductive nanopaper based on bacterial cellulose/poly(3,4-ethylenedioxythiophene). Kwon G; Kim SH; Kim D; Lee K; Jeon Y; Park CS; You J Carbohydr Polym; 2021 Apr; 257():117658. PubMed ID: 33541667 [TBL] [Abstract][Full Text] [Related]
14. A uniaxially oriented nanofibrous cellulose scaffold from pellicles produced by Gluconacetobacter xylinus in dissolved oxygen culture. Nagashima A; Tsuji T; Kondo T Carbohydr Polym; 2016 Jan; 135():215-24. PubMed ID: 26453871 [TBL] [Abstract][Full Text] [Related]
15. Homogenous isolation of individualized bacterial nanofibrillated cellulose by high pressure homogenization. Kawee N; Lam NT; Sukyai P Carbohydr Polym; 2018 Jan; 179():394-401. PubMed ID: 29111066 [TBL] [Abstract][Full Text] [Related]
17. Evaluation of bacterial cellulose/hyaluronan nanocomposite biomaterials. Li Y; Qing S; Zhou J; Yang G Carbohydr Polym; 2014 Mar; 103():496-501. PubMed ID: 24528759 [TBL] [Abstract][Full Text] [Related]
18. Overview of bacterial cellulose composites: a multipurpose advanced material. Shah N; Ul-Islam M; Khattak WA; Park JK Carbohydr Polym; 2013 Nov; 98(2):1585-98. PubMed ID: 24053844 [TBL] [Abstract][Full Text] [Related]
19. Improvement production of bacterial cellulose by semi-continuous process in molasses medium. Cakar F; Ozer I; Aytekin AÖ; Sahin F Carbohydr Polym; 2014 Jun; 106():7-13. PubMed ID: 24721044 [TBL] [Abstract][Full Text] [Related]
20. Suppression of phase transitions in a confined rodlike liquid crystal. Grigoriadis C; Duran H; Steinhart M; Kappl M; Butt HJ; Floudas G ACS Nano; 2011 Nov; 5(11):9208-15. PubMed ID: 21974835 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]