BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

496 related articles for article (PubMed ID: 27083573)

  • 21. DNA methylation: an epigenetic mark of cellular memory.
    Kim M; Costello J
    Exp Mol Med; 2017 Apr; 49(4):e322. PubMed ID: 28450738
    [TBL] [Abstract][Full Text] [Related]  

  • 22. X Chromosome Dosage Influences DNA Methylation Dynamics during Reprogramming to Mouse iPSCs.
    Pasque V; Karnik R; Chronis C; Petrella P; Langerman J; Bonora G; Song J; Vanheer L; Sadhu Dimashkie A; Meissner A; Plath K
    Stem Cell Reports; 2018 May; 10(5):1537-1550. PubMed ID: 29681539
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Whole-Genome DNA Methylation Analyses Revealed Epigenetic Instability in Tumorigenic Human iPS Cell-Derived Neural Stem/Progenitor Cells.
    Iida T; Iwanami A; Sanosaka T; Kohyama J; Miyoshi H; Nagoshi N; Kashiwagi R; Toyama Y; Matsumoto M; Nakamura M; Okano H
    Stem Cells; 2017 May; 35(5):1316-1327. PubMed ID: 28142229
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Comparative proteomic analysis of human somatic cells, induced pluripotent stem cells, and embryonic stem cells.
    Kim SY; Kim MJ; Jung H; Kim WK; Kwon SO; Son MJ; Jang IS; Choi JS; Park SG; Park BC; Han YM; Lee SC; Cho YS; Bae KH
    Stem Cells Dev; 2012 May; 21(8):1272-86. PubMed ID: 21787230
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Differential X Chromosome Inactivation Patterns during the Propagation of Human Induced Pluripotent Stem Cells.
    Andoh-Noda T; Akamatsu W; Miyake K; Kobayashi T; Ohyama M; Kurosawa H; Kubota T; Okano H
    Keio J Med; 2017 Mar; 66(1):1-8. PubMed ID: 28111378
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Current reprogramming systems in regenerative medicine: from somatic cells to induced pluripotent stem cells.
    Hu C; Li L
    Regen Med; 2016 Jan; 11(1):105-32. PubMed ID: 26679838
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mechanisms underlying the formation of induced pluripotent stem cells.
    González F; Huangfu D
    Wiley Interdiscip Rev Dev Biol; 2016; 5(1):39-65. PubMed ID: 26383234
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Epigenetics of cell fate reprogramming and its implications for neurological disorders modelling.
    Grzybek M; Golonko A; Walczak M; Lisowski P
    Neurobiol Dis; 2017 Mar; 99():84-120. PubMed ID: 27890672
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Positioning canine induced pluripotent stem cells (iPSCs) in the reprogramming landscape of naïve or primed state in comparison to mouse and human iPSCs.
    Menon DV; Bhaskar S; Sheshadri P; Joshi CG; Patel D; Kumar A
    Life Sci; 2021 Jan; 264():118701. PubMed ID: 33130086
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Mammalian DNA methylation and its roles during the induced re-programming of somatic cells].
    Hongwei S; Tiezhu A; Shanhua P; Chunsheng W
    Yi Chuan; 2014 May; 36(5):431-8. PubMed ID: 24846992
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Cellular trajectories and molecular mechanisms of iPSC reprogramming.
    Apostolou E; Stadtfeld M
    Curr Opin Genet Dev; 2018 Oct; 52():77-85. PubMed ID: 29925040
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Environmental epigenetic modifications and reprogramming-recalcitrant genes.
    Sakurada K
    Stem Cell Res; 2010 May; 4(3):157-64. PubMed ID: 20167552
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Role of mass spectrometry-based proteomics in the study of cellular reprogramming and induced pluripotent stem cells.
    Benevento M; Munoz J
    Expert Rev Proteomics; 2012 Aug; 9(4):379-99. PubMed ID: 22967076
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Redox and Epigenetics in Human Pluripotent Stem Cells Differentiation.
    Giallongo S; Rehakova D; Raffaele M; Lo Re O; Koutna I; Vinciguerra M
    Antioxid Redox Signal; 2021 Feb; 34(4):335-349. PubMed ID: 32567336
    [No Abstract]   [Full Text] [Related]  

  • 35. Epigenetic reprogramming of cell identity: lessons from development for regenerative medicine.
    Basu A; Tiwari VK
    Clin Epigenetics; 2021 Jul; 13(1):144. PubMed ID: 34301318
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Reactivation of Endogenous Genes and Epigenetic Remodeling Are Barriers for Generating Transgene-Free Induced Pluripotent Stem Cells in Pig.
    Choi KH; Park JK; Son D; Hwang JY; Lee DK; Ka H; Park J; Lee CK
    PLoS One; 2016; 11(6):e0158046. PubMed ID: 27336671
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Pluripotent state induction in mouse embryonic fibroblast using mRNAs of reprogramming factors.
    El-Sayed AK; Zhang Z; Zhang L; Liu Z; Abbott LC; Zhang Y; Li B
    Int J Mol Sci; 2014 Nov; 15(12):21840-64. PubMed ID: 25437916
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Obstacles in Renal Regenerative Medicine: Metabolic and Epigenetic Parallels Between Cellular Reprogramming and Kidney Cancer Oncogenesis.
    Lichner Z; Mac-Way F; Yousef GM
    Eur Urol Focus; 2019 Mar; 5(2):250-261. PubMed ID: 28847686
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Epigenetic and transcriptional modulation of WDR5, a chromatin remodeling protein, in Huntington's disease human induced pluripotent stem cell (hiPSC) model.
    Baronchelli S; La Spada A; Ntai A; Barbieri A; Conforti P; Jotti GS; Redaelli S; Bentivegna A; De Blasio P; Biunno I
    Mol Cell Neurosci; 2017 Jul; 82():46-57. PubMed ID: 28476540
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Dual-specificity Tyrosine Phosphorylation-regulated Kinase Inhibitor ID-8 Promotes Human Somatic Cell Reprogramming by Activating PDK4 Expression.
    Xu J; Fang S; Wang N; Li B; Huang Y; Fan Q; Shi J; Liu H; Shao Z
    Stem Cell Rev Rep; 2022 Aug; 18(6):2074-2087. PubMed ID: 35080746
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 25.