These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 27083705)

  • 1. Design principles for high-pressure force fields: Aqueous TMAO solutions from ambient to kilobar pressures.
    Hölzl C; Kibies P; Imoto S; Frach R; Suladze S; Winter R; Marx D; Horinek D; Kast SM
    J Chem Phys; 2016 Apr; 144(14):144104. PubMed ID: 27083705
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Water structure and solvation of osmolytes at high hydrostatic pressure: pure water and TMAO solutions at 10 kbar versus 1 bar.
    Imoto S; Forbert H; Marx D
    Phys Chem Chem Phys; 2015 Oct; 17(37):24224-37. PubMed ID: 26325021
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pressure-dependent electronic structure calculations using integral equation-based solvation models.
    Pongratz T; Kibies P; Eberlein L; Tielker N; Hölzl C; Imoto S; Beck Erlach M; Kurrmann S; Schummel PH; Hofmann M; Reiser O; Winter R; Kremer W; Kalbitzer HR; Marx D; Horinek D; Kast SM
    Biophys Chem; 2020 Feb; 257():106258. PubMed ID: 31881504
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of trimethylamine-N-oxide on pressure-induced dissolution of hydrophobic solute.
    Sarma R; Paul S
    J Chem Phys; 2012 Sep; 137(11):114503. PubMed ID: 22998267
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of aqueous solutions of trimethylamine-N-oxide on pressure induced modifications of hydrophobic interactions.
    Sarma R; Paul S
    J Chem Phys; 2012 Sep; 137(9):094502. PubMed ID: 22957576
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure and thermodynamics of aqueous urea solutions from ambient to kilobar pressures: From thermodynamic modeling, experiments, and first principles simulations to an accurate force field description.
    Hölzl C; Kibies P; Imoto S; Noetzel J; Knierbein M; Salmen P; Paulus M; Nase J; Held C; Sadowski G; Marx D; Kast SM; Horinek D
    Biophys Chem; 2019 Nov; 254():106260. PubMed ID: 31522071
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Crucial importance of water structure modification on trimethylamine N-oxide counteracting effect at high pressure.
    Sarma R; Paul S
    J Phys Chem B; 2013 Jan; 117(2):677-89. PubMed ID: 23268746
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Three-Dimensional RISM Integral Equation Theory for Polarizable Solute Models.
    Hoffgaard F; Heil J; Kast SM
    J Chem Theory Comput; 2013 Nov; 9(11):4718-26. PubMed ID: 26583390
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Density variations of TMAO solutions in the kilobar range: Experiments, PC-SAFT predictions, and molecular dynamics simulations.
    Knierbein M; Held C; Hölzl C; Horinek D; Paulus M; Sadowski G; Sternemann C; Nase J
    Biophys Chem; 2019 Oct; 253():106222. PubMed ID: 31421516
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mutual Exclusion of Urea and Trimethylamine N-Oxide from Amino Acids in Mixed Solvent Environment.
    Ganguly P; Hajari T; Shea JE; van der Vegt NF
    J Phys Chem Lett; 2015 Feb; 6(4):581-5. PubMed ID: 26262470
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydrophobic interactions in water-trimethylamine-N-oxide solutions: the effects of pressure.
    Biyani N; Paul S
    J Phys Chem B; 2009 Jul; 113(29):9644-5. PubMed ID: 19569639
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Trimethylamine N-oxide Counteracts Urea Denaturation by Inhibiting Protein-Urea Preferential Interaction.
    Ganguly P; Boserman P; van der Vegt NFA; Shea JE
    J Am Chem Soc; 2018 Jan; 140(1):483-492. PubMed ID: 29214802
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interactions of S-peptide analogue in aqueous urea and trimethylamine-N-oxide solutions: a molecular dynamics simulation study.
    Sarma R; Paul S
    J Chem Phys; 2013 Jul; 139(3):034504. PubMed ID: 23883044
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Protein Stability in TMAO and Mixed Urea-TMAO Solutions.
    Ganguly P; Polák J; van der Vegt NFA; Heyda J; Shea JE
    J Phys Chem B; 2020 Jul; 124(29):6181-6197. PubMed ID: 32495623
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pressure, Peptides, and a Piezolyte: Structural Analysis of the Effects of Pressure and Trimethylamine-
    Folberth A; Polák J; Heyda J; van der Vegt NFA
    J Phys Chem B; 2020 Jul; 124(30):6508-6519. PubMed ID: 32615760
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure and interaction in aqueous urea-trimethylamine-N-oxide solutions.
    Paul S; Patey GN
    J Am Chem Soc; 2007 Apr; 129(14):4476-82. PubMed ID: 17373796
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exploring the molecular mechanism of trimethylamine-N-oxide's ability to counteract the protein denaturing effects of urea.
    Sarma R; Paul S
    J Phys Chem B; 2013 May; 117(18):5691-704. PubMed ID: 23586614
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Double resolution model for studying TMAO/water effective interactions.
    Larini L; Shea JE
    J Phys Chem B; 2013 Oct; 117(42):13268-77. PubMed ID: 23786631
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Trimethylamine-N-oxide: its hydration structure, surface activity, and biological function, viewed by vibrational spectroscopy and molecular dynamics simulations.
    Ohto T; Hunger J; Backus EH; Mizukami W; Bonn M; Nagata Y
    Phys Chem Chem Phys; 2017 Mar; 19(10):6909-6920. PubMed ID: 28149990
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cosolvent Exclusion Drives Protein Stability in Trimethylamine
    Ganguly P; Bubák D; Polák J; Fagan P; Dračínský M; van der Vegt NFA; Heyda J; Shea JE
    J Phys Chem Lett; 2022 Sep; 13(34):7980-7986. PubMed ID: 35984361
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.