These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

555 related articles for article (PubMed ID: 27083708)

  • 1. Effective Hamiltonians for correlated narrow energy band systems and magnetic insulators: Role of spin-orbit interactions in metal-insulator transitions and magnetic phase transitions.
    Chakraborty S; Vijay A
    J Chem Phys; 2016 Apr; 144(14):144107. PubMed ID: 27083708
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Doped Mott insulators in (111) bilayers of perovskite transition-metal oxides with a strong spin-orbit coupling.
    Okamoto S
    Phys Rev Lett; 2013 Feb; 110(6):066403. PubMed ID: 23432283
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exotic quantum spin models in spin-orbit-coupled Mott insulators.
    Radić J; Di Ciolo A; Sun K; Galitski V
    Phys Rev Lett; 2012 Aug; 109(8):085303. PubMed ID: 23002755
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bose-Hubbard models with synthetic spin-orbit coupling: Mott insulators, spin textures, and superfluidity.
    Cole WS; Zhang S; Paramekanti A; Trivedi N
    Phys Rev Lett; 2012 Aug; 109(8):085302. PubMed ID: 23002754
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mott insulators in the strong spin-orbit coupling limit: from Heisenberg to a quantum compass and Kitaev models.
    Jackeli G; Khaliullin G
    Phys Rev Lett; 2009 Jan; 102(1):017205. PubMed ID: 19257237
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Carrier localization and electronic phase separation in a doped spin-orbit-driven Mott phase in Sr₃(Ir(1-x)Ru(x))₂O₇.
    Dhital C; Hogan T; Zhou W; Chen X; Ren Z; Pokharel M; Okada Y; Heine M; Tian W; Yamani Z; Opeil C; Helton JS; Lynn JW; Wang Z; Madhavan V; Wilson SD
    Nat Commun; 2014 Feb; 5():3377. PubMed ID: 24566714
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microscopic study of a spin-orbit-induced Mott insulator in Ir oxides.
    Watanabe H; Shirakawa T; Yunoki S
    Phys Rev Lett; 2010 Nov; 105(21):216410. PubMed ID: 21231335
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Magnetic properties and energy-mapping analysis.
    Xiang H; Lee C; Koo HJ; Gong X; Whangbo MH
    Dalton Trans; 2013 Jan; 42(4):823-53. PubMed ID: 23128376
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantum spin liquids unveil the genuine Mott state.
    Pustogow A; Bories M; Löhle A; Rösslhuber R; Zhukova E; Gorshunov B; Tomić S; Schlueter JA; Hübner R; Hiramatsu T; Yoshida Y; Saito G; Kato R; Lee TH; Dobrosavljević V; Fratini S; Dressel M
    Nat Mater; 2018 Sep; 17(9):773-777. PubMed ID: 30082905
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A continuous metal-insulator transition driven by spin correlations.
    Feng Y; Wang Y; Silevitch DM; Cooper SE; Mandrus D; Lee PA; Rosenbaum TF
    Nat Commun; 2021 May; 12(1):2779. PubMed ID: 33986275
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electronic reconstruction at an interface between a Mott insulator and a band insulator.
    Okamoto S; Millis AJ
    Nature; 2004 Apr; 428(6983):630-3. PubMed ID: 15071589
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phase transitions of the Kane-Mele-Hubbard model with a long-range hopping.
    Du T; Li YX; Lu HL; Zhang H
    J Phys Condens Matter; 2018 Nov; 30(47):475601. PubMed ID: 30378568
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Slater Insulator in Iridate Perovskites with Strong Spin-Orbit Coupling.
    Cui Q; Cheng JG; Fan W; Taylor AE; Calder S; McGuire MA; Yan JQ; Meyers D; Li X; Cai YQ; Jiao YY; Choi Y; Haskel D; Gotou H; Uwatoko Y; Chakhalian J; Christianson AD; Yunoki S; Goodenough JB; Zhou JS
    Phys Rev Lett; 2016 Oct; 117(17):176603. PubMed ID: 27824456
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intrinsic contribution to spin Hall and spin Nernst effects in a bilayer graphene.
    Dyrdał A; Barnaś J
    J Phys Condens Matter; 2012 Jul; 24(27):275302. PubMed ID: 22713801
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mott physics and topological phase transition in correlated dirac fermions.
    Yu SL; Xie XC; Li JX
    Phys Rev Lett; 2011 Jul; 107(1):010401. PubMed ID: 21797524
    [TBL] [Abstract][Full Text] [Related]  

  • 16. First-Order Melting of a Weak Spin-Orbit Mott Insulator into a Correlated Metal.
    Hogan T; Yamani Z; Walkup D; Chen X; Dally R; Ward TZ; Dean MP; Hill J; Islam Z; Madhavan V; Wilson SD
    Phys Rev Lett; 2015 Jun; 114(25):257203. PubMed ID: 26197142
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Topological crystalline insulators in transition metal oxides.
    Kargarian M; Fiete GA
    Phys Rev Lett; 2013 Apr; 110(15):156403. PubMed ID: 25167290
    [TBL] [Abstract][Full Text] [Related]  

  • 18. What Are the Physical Contents of Hubbard and Heisenberg Hamiltonian Interactions Extracted from Broken Symmetry DFT Calculations in Magnetic Compounds?
    David G; Guihéry N; Ferré N
    J Chem Theory Comput; 2017 Dec; 13(12):6253-6265. PubMed ID: 29039936
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transition metal chalcogenides: ultrathin inorganic materials with tunable electronic properties.
    Heine T
    Acc Chem Res; 2015 Jan; 48(1):65-72. PubMed ID: 25489917
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Band of critical States in anderson localization in a strong magnetic field with random spin-orbit scattering.
    Wang C; Su Y; Avishai Y; Meir Y; Wang XR
    Phys Rev Lett; 2015 Mar; 114(9):096803. PubMed ID: 25793840
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 28.