These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
150 related articles for article (PubMed ID: 27083741)
1. Plasmon transmission through excitonic subwavelength gaps. Sukharev M; Nitzan A J Chem Phys; 2016 Apr; 144(14):144703. PubMed ID: 27083741 [TBL] [Abstract][Full Text] [Related]
2. Angle- and energy-resolved plasmon coupling in gold nanorod dimers. Shao L; Woo KC; Chen H; Jin Z; Wang J; Lin HQ ACS Nano; 2010 Jun; 4(6):3053-62. PubMed ID: 20565141 [TBL] [Abstract][Full Text] [Related]
3. Single vs double anti-crossing in the strong coupling between surface plasmons and molecular excitons. Tan WJ; Thomas PA; Luxmoore IJ; Barnes WL J Chem Phys; 2021 Jan; 154(2):024704. PubMed ID: 33445885 [TBL] [Abstract][Full Text] [Related]
4. Plasmonic band gap engineering of plasmon-exciton coupling. Karademir E; Balci S; Kocabas C; Aydinli A Opt Lett; 2014 Oct; 39(19):5697-700. PubMed ID: 25360962 [TBL] [Abstract][Full Text] [Related]
5. Universal scaling and Fano resonance in the plasmon coupling between gold nanorods. Woo KC; Shao L; Chen H; Liang Y; Wang J; Lin HQ ACS Nano; 2011 Jul; 5(7):5976-86. PubMed ID: 21702485 [TBL] [Abstract][Full Text] [Related]
8. Plasmon-hybridization-induced optical torque between twisted metal nanorods. Wu A; Tanaka YY; Shimura T Opt Express; 2020 Jan; 28(2):2398-2410. PubMed ID: 32121930 [TBL] [Abstract][Full Text] [Related]
9. Coupling of optical resonances in a compositionally asymmetric plasmonic nanoparticle dimer. Sheikholeslami S; Jun YW; Jain PK; Alivisatos AP Nano Lett; 2010 Jul; 10(7):2655-60. PubMed ID: 20536212 [TBL] [Abstract][Full Text] [Related]
10. Exciton-Plasmon Energy Exchange Drives the Transition to a Strong Coupling Regime. Shahbazyan TV Nano Lett; 2019 May; 19(5):3273-3279. PubMed ID: 30973738 [TBL] [Abstract][Full Text] [Related]
11. How does the plasmonic enhancement of molecular absorption depend on the energy gap between molecular excitation and plasmon modes: a mixed TDDFT/FDTD investigation. Sun J; Li G; Liang W Phys Chem Chem Phys; 2015 Jul; 17(26):16835-45. PubMed ID: 26058430 [TBL] [Abstract][Full Text] [Related]
12. Coupling between gap plasmon polariton and magnetic polariton in a metallic-dielectric multilayer structure. Chen J; Wang P; Zhang ZM; Lu Y; Ming H Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Aug; 84(2 Pt 2):026603. PubMed ID: 21929124 [TBL] [Abstract][Full Text] [Related]
14. Metal-Substrate-Mediated Plasmon Hybridization in a Nanoparticle Dimer for Photoluminescence Line-Width Shrinking and Intensity Enhancement. Li GC; Zhang YL; Jiang J; Luo Y; Lei DY ACS Nano; 2017 Mar; 11(3):3067-3080. PubMed ID: 28291332 [TBL] [Abstract][Full Text] [Related]
15. Bonding and Anti-bonding Modes of Plasmon Coupling Effects in TiO2-Ag Core-shell Dimers. Li Q; Zhang Z Sci Rep; 2016 Jan; 6():19433. PubMed ID: 26763719 [TBL] [Abstract][Full Text] [Related]
16. Hybrid photonic-plasmonic molecule based on metal/Si disks. Wang Q; Zhao H; Du X; Zhang W; Qiu M; Li Q Opt Express; 2013 May; 21(9):11037-47. PubMed ID: 23669960 [TBL] [Abstract][Full Text] [Related]
18. Orientation-Dependent Exciton-Plasmon Coupling in Embedded Organic/Metal Nanowire Heterostructures. Li YJ; Hong Y; Peng Q; Yao J; Zhao YS ACS Nano; 2017 Oct; 11(10):10106-10112. PubMed ID: 28930431 [TBL] [Abstract][Full Text] [Related]
19. Plasmon-induced coherence, exciton-induced transparency, and Fano interference for hybrid plasmonic systems in strong coupling regime. Scott Z; Muhammad S; Shahbazyan TV J Chem Phys; 2022 May; 156(19):194702. PubMed ID: 35597643 [TBL] [Abstract][Full Text] [Related]
20. Nearfield excited state imaging of bonding and antibonding plasmon modes in nanorod dimers via stimulated electron energy gain spectroscopy. Collette R; Garfinkel DA; Rack PD J Chem Phys; 2020 Jul; 153(4):044711. PubMed ID: 32752671 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]