BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

269 related articles for article (PubMed ID: 2708380)

  • 1. Structural analysis of the FMN binding domain of NADPH-cytochrome P-450 oxidoreductase by site-directed mutagenesis.
    Shen AL; Porter TD; Wilson TE; Kasper CB
    J Biol Chem; 1989 May; 264(13):7584-9. PubMed ID: 2708380
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Critical residues involved in FMN binding and catalytic activity in cytochrome P450BM-3.
    Klein ML; Fulco AJ
    J Biol Chem; 1993 Apr; 268(10):7553-61. PubMed ID: 8463285
    [TBL] [Abstract][Full Text] [Related]  

  • 3. NADPH-cytochrome P-450 oxidoreductase: flavin mononucleotide and flavin adenine dinucleotide domains evolved from different flavoproteins.
    Porter TD; Kasper CB
    Biochemistry; 1986 Apr; 25(7):1682-7. PubMed ID: 3085707
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electron transfer in flavocytochrome P450 BM3: kinetics of flavin reduction and oxidation, the role of cysteine 999, and relationships with mammalian cytochrome P450 reductase.
    Roitel O; Scrutton NS; Munro AW
    Biochemistry; 2003 Sep; 42(36):10809-21. PubMed ID: 12962506
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differential contributions of NADPH-cytochrome P450 oxidoreductase FAD binding site residues to flavin binding and catalysis.
    Shen AL; Kasper CB
    J Biol Chem; 2000 Dec; 275(52):41087-91. PubMed ID: 11022049
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The flavoprotein domain of P450BM-3: expression, purification, and properties of the flavin adenine dinucleotide- and flavin mononucleotide-binding subdomains.
    Sevrioukova I; Truan G; Peterson JA
    Biochemistry; 1996 Jun; 35(23):7528-35. PubMed ID: 8652532
    [TBL] [Abstract][Full Text] [Related]  

  • 7. NADPH-cytochrome P-450 reductase. Physical properties and redox behavior in the absence of the FAD moiety.
    Kurzban GP; Howarth J; Palmer G; Strobel HW
    J Biol Chem; 1990 Jul; 265(21):12272-9. PubMed ID: 2115516
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Four crystal structures of the 60 kDa flavoprotein monomer of the sulfite reductase indicate a disordered flavodoxin-like module.
    Gruez A; Pignol D; Zeghouf M; Covès J; Fontecave M; Ferrer JL; Fontecilla-Camps JC
    J Mol Biol; 2000 May; 299(1):199-212. PubMed ID: 10860732
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Crystal structure of the FAD/NADPH-binding domain of rat neuronal nitric-oxide synthase. Comparisons with NADPH-cytochrome P450 oxidoreductase.
    Zhang J; Martàsek P; Paschke R; Shea T; Siler Masters BS; Kim JJ
    J Biol Chem; 2001 Oct; 276(40):37506-13. PubMed ID: 11473123
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of the conserved phenylalanine 181 of NADPH-cytochrome P450 oxidoreductase in FMN binding and catalytic activity.
    Paine MJ; Ayivor S; Munro A; Tsan P; Lian LY; Roberts GC; Wolf CR
    Biochemistry; 2001 Nov; 40(45):13439-47. PubMed ID: 11695890
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Equilibrium and transient state spectrophotometric studies of the mechanism of reduction of the flavoprotein domain of P450BM-3.
    Sevrioukova I; Shaffer C; Ballou DP; Peterson JA
    Biochemistry; 1996 Jun; 35(22):7058-68. PubMed ID: 8679531
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantitation of FAD-dependent cytochrome P450 reductase activity by photoreduction.
    Hodgson AV; Strobel HW
    Anal Biochem; 1996 Dec; 243(1):154-7. PubMed ID: 8954538
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Relaxation kinetics of cytochrome P450 reductase: internal electron transfer is limited by conformational change and regulated by coenzyme binding.
    Gutierrez A; Paine M; Wolf CR; Scrutton NS; Roberts GC
    Biochemistry; 2002 Apr; 41(14):4626-37. PubMed ID: 11926825
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dissection of NADPH-cytochrome P450 oxidoreductase into distinct functional domains.
    Smith GC; Tew DG; Wolf CR
    Proc Natl Acad Sci U S A; 1994 Aug; 91(18):8710-4. PubMed ID: 8078947
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural and Kinetic Studies of Asp632 Mutants and Fully Reduced NADPH-Cytochrome P450 Oxidoreductase Define the Role of Asp632 Loop Dynamics in the Control of NADPH Binding and Hydride Transfer.
    Xia C; Rwere F; Im S; Shen AL; Waskell L; Kim JP
    Biochemistry; 2018 Feb; 57(6):945-962. PubMed ID: 29308883
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Three-dimensional structure of NADPH-cytochrome P450 reductase: prototype for FMN- and FAD-containing enzymes.
    Wang M; Roberts DL; Paschke R; Shea TM; Masters BS; Kim JJ
    Proc Natl Acad Sci U S A; 1997 Aug; 94(16):8411-6. PubMed ID: 9237990
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A 31P-nuclear-magnetic-resonance study of NADPH-cytochrome-P-450 reductase and of the Azotobacter flavodoxin/ferredoxin-NADP+ reductase complex.
    Bonants PJ; Müller F; Vervoort J; Edmondson DE
    Eur J Biochem; 1990 Jul; 190(3):531-7. PubMed ID: 2115440
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interflavin one-electron transfer in the inducible nitric oxide synthase reductase domain and NADPH-cytochrome P450 reductase.
    Yamamoto K; Kimura S; Shiro Y; Iyanagi T
    Arch Biochem Biophys; 2005 Aug; 440(1):65-78. PubMed ID: 16009330
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Separate roles for FMN and FAD in catalysis by liver microsomal NADPH-cytochrome P-450 reductase.
    Vermilion JL; Ballou DP; Massey V; Coon MJ
    J Biol Chem; 1981 Jan; 256(1):266-77. PubMed ID: 6778861
    [TBL] [Abstract][Full Text] [Related]  

  • 20. NADPH-cytochrome P-450 oxidoreductase gene organization correlates with structural domains of the protein.
    Porter TD; Beck TW; Kasper CB
    Biochemistry; 1990 Oct; 29(42):9814-8. PubMed ID: 2125483
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.