These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 27083802)

  • 61. Side selective surface modification of chitin nanofibers on anionically modified cotton fabrics.
    Wijesena RN; Tissera N; Perera R; de Silva KM
    Carbohydr Polym; 2014 Aug; 109():56-63. PubMed ID: 24815401
    [TBL] [Abstract][Full Text] [Related]  

  • 62. The impact of design variables and aftercare regime on the long-term performance of pressure garments.
    Macintyre L; Gilmartin S; Rae M
    J Burn Care Res; 2007; 28(5):725-33. PubMed ID: 17667831
    [TBL] [Abstract][Full Text] [Related]  

  • 63. The influence of supramolecular structure of cellulose allomorphs on the interactions with cellulose-binding domain, CBD3b from Paenibacillus barcinonensis.
    Ciolacu D; Chiriac AI; Pastor FI; Kokol V
    Bioresour Technol; 2014 Apr; 157():14-21. PubMed ID: 24525243
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Characterization of cellulosic fibers and fabrics by sorption/desorption.
    Siroka B; Noisternig M; Griesser UJ; Bechtold T
    Carbohydr Res; 2008 Aug; 343(12):2194-9. PubMed ID: 18314097
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Effect of dicarboxylic acid chain length on the self-cleaning property of Nano-TiO2-coated cotton fabrics.
    Khajavi R; Berendjchi A
    ACS Appl Mater Interfaces; 2014 Nov; 6(21):18795-9. PubMed ID: 25275802
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Structure and properties of novel fibers spun from cellulose in NaOH/thiourea aqueous solution.
    Ruan D; Zhang L; Zhou J; Jin H; Chen H
    Macromol Biosci; 2004 Dec; 4(12):1105-12. PubMed ID: 15586387
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Identification of cellulose textile fibers.
    Mäkelä M; Rissanen M; Sixta H
    Analyst; 2021 Dec; 146(24):7503-7509. PubMed ID: 34766958
    [TBL] [Abstract][Full Text] [Related]  

  • 68. [Determination of alpha-cellulose content of natural cellulose pulp in a new clean pulping process using near infrared diffuse reflectance spectroscopy].
    Huang J; Yuan HF; Song CF; Li XY; Xie JC; Du JQ
    Guang Pu Xue Yu Guang Pu Fen Xi; 2013 Jan; 33(1):60-4. PubMed ID: 23586225
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Crosslinking chitosan into H3PO4/HNO3-NANO2 oxidized cellulose fabrics as antibacterial-finished material.
    Xu Y; Qiu C; Zhang X; Zhang W
    Carbohydr Polym; 2014 Nov; 112():186-94. PubMed ID: 25129734
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Examination of cellulose textile fibres in historical objects by micro-Raman spectroscopy.
    Kavkler K; Demšar A
    Spectrochim Acta A Mol Biomol Spectrosc; 2011 Feb; 78(2):740-6. PubMed ID: 21190892
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Comparative investigation of Fourier transform infrared (FT-IR) spectroscopy and X-ray diffraction (XRD) in the determination of cotton fiber crystallinity.
    Liu Y; Thibodeaux D; Gamble G; Bauer P; VanDerveer D
    Appl Spectrosc; 2012 Aug; 66(8):983-6. PubMed ID: 22800914
    [TBL] [Abstract][Full Text] [Related]  

  • 72. The influence of nano-ZnO application methods on UV protective properties of cotton.
    Kert M; Jazbec K; Černe L; Jerman I; Gorjanc M
    Acta Chim Slov; 2014; 61(3):587-94. PubMed ID: 25286214
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Triazinyl porphyrin-based photoactive cotton fabrics: preparation, characterization, and antibacterial activity.
    Ringot C; Sol V; Barrière M; Saad N; Bressollier P; Granet R; Couleaud P; Frochot C; Krausz P
    Biomacromolecules; 2011 May; 12(5):1716-23. PubMed ID: 21438501
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Surface Characterisation of Atmospheric Pressure Plasma Treated Cotton Fabric-Effect of Operation Parameters.
    Kan CW; Man WS
    Polymers (Basel); 2018 Feb; 10(3):. PubMed ID: 30966285
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Wettability and surface composition of partly and fully regenerated cellulose thin films from trimethylsilyl cellulose.
    Mohan T; Kargl R; Doliška A; Vesel A; Köstler S; Ribitsch V; Stana-Kleinschek K
    J Colloid Interface Sci; 2011 Jun; 358(2):604-10. PubMed ID: 21458821
    [TBL] [Abstract][Full Text] [Related]  

  • 76. An investigation into secondary transfer-The transfer of textile fibres to seats.
    Palmer R; Sheridan K; Puckett J; Richardson N; Lo W
    Forensic Sci Int; 2017 Sep; 278():334-337. PubMed ID: 28802949
    [TBL] [Abstract][Full Text] [Related]  

  • 77. In vitro and in vivo determination of the UV protection factor for lightweight cotton and viscose summer fabrics: a preliminary study.
    Hoffmann K; Kaspar K; Gambichler T; Altmeyer P
    J Am Acad Dermatol; 2000 Dec; 43(6):1009-16. PubMed ID: 11100016
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Functionalized cotton via surface-initiated atom transfer radical polymerization for enhanced sorption of Cu(II) and Pb(II).
    Zheng YQ; Deng S; Niu L; Xu FJ; Chai MY; Yu G
    J Hazard Mater; 2011 Sep; 192(3):1401-8. PubMed ID: 21742433
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Morphing Compression Garments for Space Medicine and Extravehicular Activity Using Active Materials.
    Holschuh BT; Newman DJ
    Aerosp Med Hum Perform; 2016 Feb; 87(2):84-92. PubMed ID: 26802372
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Particles from bird feather: a novel application of an ionic liquid and waste resource.
    Sun P; Liu ZT; Liu ZW
    J Hazard Mater; 2009 Oct; 170(2-3):786-90. PubMed ID: 19497665
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.