These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 27083808)

  • 1. The role of heteropolysaccharides in developing oxidized cellulose nanofibrils.
    Meng Q; Fu S; Lucia LA
    Carbohydr Polym; 2016 Jun; 144():187-95. PubMed ID: 27083808
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Relationship between length and degree of polymerization of TEMPO-oxidized cellulose nanofibrils.
    Shinoda R; Saito T; Okita Y; Isogai A
    Biomacromolecules; 2012 Mar; 13(3):842-9. PubMed ID: 22276990
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cellulose nanofibrils prepared from softwood cellulose by TEMPO/NaClO/NaClO₂ systems in water at pH 4.8 or 6.8.
    Tanaka R; Saito T; Isogai A
    Int J Biol Macromol; 2012 Oct; 51(3):228-34. PubMed ID: 22617623
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative characterization of TEMPO-oxidized cellulose nanofibril films prepared from non-wood resources.
    Puangsin B; Yang Q; Saito T; Isogai A
    Int J Biol Macromol; 2013 Aug; 59():208-13. PubMed ID: 23603078
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of TEMPO-oxidized cellulose nanofibril length on film properties.
    Fukuzumi H; Saito T; Isogai A
    Carbohydr Polym; 2013 Mar; 93(1):172-7. PubMed ID: 23465916
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular mass and molecular-mass distribution of TEMPO-oxidized celluloses and TEMPO-oxidized cellulose nanofibrils.
    Hiraoki R; Ono Y; Saito T; Isogai A
    Biomacromolecules; 2015 Feb; 16(2):675-81. PubMed ID: 25584418
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adsorption of cationized eucalyptus heteropolysaccharides onto chemical and mechanical pulp fibers.
    Hu G; Fu S; Liu H; Lucia LA
    Carbohydr Polym; 2015 Jun; 123():324-30. PubMed ID: 25843865
    [TBL] [Abstract][Full Text] [Related]  

  • 8. TEMPO-oxidized cellulose nanofibril film from nano-structured bacterial cellulose derived from the recently developed thermotolerant Komagataeibacter xylinus C30 and Komagataeibacter oboediens R37-9 strains.
    Chitbanyong K; Pisutpiched S; Khantayanuwong S; Theeragool G; Puangsin B
    Int J Biol Macromol; 2020 Nov; 163():1908-1914. PubMed ID: 32976905
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On the morphology of cellulose nanofibrils obtained by TEMPO-mediated oxidation and mechanical treatment.
    Gamelas JA; Pedrosa J; Lourenço AF; Mutjé P; González I; Chinga-Carrasco G; Singh G; Ferreira PJ
    Micron; 2015 May; 72():28-33. PubMed ID: 25768897
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Individualization of nano-sized plant cellulose fibrils by direct surface carboxylation using TEMPO catalyst under neutral conditions.
    Saito T; Hirota M; Tamura N; Kimura S; Fukuzumi H; Heux L; Isogai A
    Biomacromolecules; 2009 Jul; 10(7):1992-6. PubMed ID: 19445519
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improvement of the Thermal Stability of TEMPO-Oxidized Cellulose Nanofibrils by Heat-Induced Conversion of Ionic Bonds to Amide Bonds.
    Lavoine N; Bras J; Saito T; Isogai A
    Macromol Rapid Commun; 2016 Jul; 37(13):1033-9. PubMed ID: 27184669
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Superior reinforcement effect of TEMPO-oxidized cellulose nanofibrils in polystyrene matrix: optical, thermal, and mechanical studies.
    Fujisawa S; Ikeuchi T; Takeuchi M; Saito T; Isogai A
    Biomacromolecules; 2012 Jul; 13(7):2188-94. PubMed ID: 22642863
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preparation and characterization of TEMPO-oxidized cellulose nanofibrils with ammonium carboxylate groups.
    Shimizu M; Fukuzumi H; Saito T; Isogai A
    Int J Biol Macromol; 2013 Aug; 59():99-104. PubMed ID: 23597708
    [TBL] [Abstract][Full Text] [Related]  

  • 14. TEMPO-oxidized cellulose nanofibers.
    Isogai A; Saito T; Fukuzumi H
    Nanoscale; 2011 Jan; 3(1):71-85. PubMed ID: 20957280
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Acid-Free Preparation of Cellulose Nanocrystals by TEMPO Oxidation and Subsequent Cavitation.
    Zhou Y; Saito T; Bergström L; Isogai A
    Biomacromolecules; 2018 Feb; 19(2):633-639. PubMed ID: 29283555
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rheology of aqueous dispersions of Laponite and TEMPO-oxidized nanofibrillated cellulose.
    Šebenik U; Lapasin R; Krajnc M
    Carbohydr Polym; 2020 Jul; 240():116330. PubMed ID: 32475587
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Relationship of Distribution of Carboxy Groups to Molar Mass Distribution of TEMPO-Oxidized Algal, Cotton, and Wood Cellulose Nanofibrils.
    Ono Y; Fukui S; Funahashi R; Isogai A
    Biomacromolecules; 2019 Oct; 20(10):4026-4034. PubMed ID: 31525036
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of pre-treatments mediated by endoglucanase and TEMPO oxidation for eco-friendly low-cost energy production of cellulose nanofibrils.
    de Amorim Dos Santos A; Silva MJFE; Scatolino MV; Durães AFS; Dias MC; Damásio RAP; Tonoli GHD
    Environ Sci Pollut Res Int; 2023 Jan; 30(2):4934-4948. PubMed ID: 35978240
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Green and Low-cost Production of Thermally Stable and Carboxylated Cellulose Nanocrystals and Nanofibrils Using Highly Recyclable Dicarboxylic Acids.
    Bian H; Chen L; Wang R; Zhu J
    J Vis Exp; 2017 Jan; (119):. PubMed ID: 28117828
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose.
    Saito T; Kimura S; Nishiyama Y; Isogai A
    Biomacromolecules; 2007 Aug; 8(8):2485-91. PubMed ID: 17630692
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.