These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 27083808)

  • 21. Preparation of Cellulose Nanofibrils from Bamboo Pulp by Mechanical Defibrillation for Their Applications in Biodegradable Composites.
    Guimarães M; Botaro VR; Novack KM; Neto WP; Mendes LM; Tonoli GH
    J Nanosci Nanotechnol; 2015 Sep; 15(9):6751-68. PubMed ID: 26716240
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Zwitterionic Cellulose Nanofibrils with High Salt Sensitivity and Tolerance.
    Wang A; Yuan Z; Wang C; Luo L; Zhang W; Geng S; Qu J; Wei B; Wen Y
    Biomacromolecules; 2020 Apr; 21(4):1471-1479. PubMed ID: 32069405
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Influence of initial chemical composition and characteristics of pulps on the production and properties of lignocellulosic nanofibers.
    Ehman NV; Lourenço AF; McDonagh BH; Vallejos ME; Felissia FE; Ferreira PJT; Chinga-Carrasco G; Area MC
    Int J Biol Macromol; 2020 Jan; 143():453-461. PubMed ID: 31778692
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Transparent and high gas barrier films of cellulose nanofibers prepared by TEMPO-mediated oxidation.
    Fukuzumi H; Saito T; Iwata T; Kumamoto Y; Isogai A
    Biomacromolecules; 2009 Jan; 10(1):162-5. PubMed ID: 19055320
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effects of pH on Nanofibrillation of TEMPO-Oxidized Paper Mulberry Bast Fibers.
    Park JY; Park CW; Han SY; Kwon GJ; Kim NH; Lee SH
    Polymers (Basel); 2019 Mar; 11(3):. PubMed ID: 30960398
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Low-birefringent and highly tough nanocellulose-reinforced cellulose triacetate.
    Soeta H; Fujisawa S; Saito T; Berglund L; Isogai A
    ACS Appl Mater Interfaces; 2015 May; 7(20):11041-6. PubMed ID: 25946413
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Regulation of postprandial blood metabolic variables by TEMPO-oxidized cellulose nanofibers.
    Shimotoyodome A; Suzuki J; Kumamoto Y; Hase T; Isogai A
    Biomacromolecules; 2011 Oct; 12(10):3812-8. PubMed ID: 21902221
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Production and Mechanical Characterisation of TEMPO-Oxidised Cellulose Nanofibrils/β-Cyclodextrin Films and Cryogels.
    Michel B; Bras J; Dufresne A; Heggset EB; Syverud K
    Molecules; 2020 May; 25(10):. PubMed ID: 32443918
    [TBL] [Abstract][Full Text] [Related]  

  • 29. TEMPO-oxidized cellulose nanofibers (TOCNs) as a green reinforcement for waterborne polyurethane coating (WPU) on wood.
    Cheng D; Wen Y; An X; Zhu X; Ni Y
    Carbohydr Polym; 2016 Oct; 151():326-334. PubMed ID: 27474574
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Oxone
    Moore Ii JP; Dachavaram SS; Bommagani S; Penthala NR; Venkatraman P; Foster EJ; Crooks PA; A Hestekin J
    Molecules; 2020 Apr; 25(8):. PubMed ID: 32316421
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Selective permeation of hydrogen gas using cellulose nanofibril film.
    Fukuzumi H; Fujisawa S; Saito T; Isogai A
    Biomacromolecules; 2013 May; 14(5):1705-9. PubMed ID: 23594396
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effect of catalyst and oxidant concentrations in a TEMPO oxidation system on the production of cellulose nanofibers.
    Park J; Lee D; Hwang K; Lee J; Lee TJ; Kim Y; Kim JH; Lee J; Youe WJ; Chun SJ; Gwon J
    RSC Adv; 2024 Oct; 14(45):32852-32862. PubMed ID: 39429929
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Interfacial Polyelectrolyte Complex Spinning of Cellulose Nanofibrils for Advanced Bicomponent Fibers.
    Toivonen MS; Kurki-Suonio S; Wagermaier W; Hynninen V; Hietala S; Ikkala O
    Biomacromolecules; 2017 Apr; 18(4):1293-1301. PubMed ID: 28262019
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Micro-mechanics of electrostatically stabilized suspensions of cellulose nanofibrils under steady state shear flow.
    Martoïa F; Dumont PJ; Orgéas L; Belgacem MN; Putaux JL
    Soft Matter; 2016 Feb; 12(6):1721-35. PubMed ID: 26725654
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Enhancement of nanofibrillation of softwood cellulosic fibers by oxidation and sulfonation.
    Pan S; Ragauskas AJ
    Carbohydr Polym; 2014 Oct; 111():514-23. PubMed ID: 25037382
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Structural analyses of supernatant fractions in TEMPO-oxidized pulp/water reaction mixtures separated by centrifugation and dialysis.
    Hou G; Chitbanyong K; Shibata I; Takeuchi M; Isogai A
    Carbohydr Polym; 2024 Jul; 336():122103. PubMed ID: 38670766
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Integrating direct reuse and extraction recovery of TEMPO for production of cellulose nanofibrils.
    Chen S; Yue N; Cui M; Penkova A; Huang R; Qi W; He Z; Su R
    Carbohydr Polym; 2022 Oct; 294():119803. PubMed ID: 35868763
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cellulose nanofibers isolated by TEMPO-oxidation and aqueous counter collision methods.
    Van Hai L; Zhai L; Kim HC; Kim JW; Choi ES; Kim J
    Carbohydr Polym; 2018 Jul; 191():65-70. PubMed ID: 29661322
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Understanding viscoelastic behavior of hybrid nanocellulose film based on rheological and electrostatic observation in blended suspension.
    Kim M; Kim S; Han N; Lee S; Kim H
    Carbohydr Polym; 2023 Jan; 300():120218. PubMed ID: 36372470
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Preparation of Self-supporting Bagasse Cellulose Nanofibrils Hydrogels Induced by Zinc Ions.
    Lu P; Liu R; Liu X; Wu M
    Nanomaterials (Basel); 2018 Oct; 8(10):. PubMed ID: 30297645
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.