BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

425 related articles for article (PubMed ID: 27083854)

  • 1. Reproductive steroid receptors and actions in the locus coeruleus of male macaques: Part of an aggression circuit?
    Bethea CL; Belikova Y; Phu K; Mammerella G
    Prog Neuropsychopharmacol Biol Psychiatry; 2016 Nov; 71():210-22. PubMed ID: 27083854
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Localization and regulation of reproductive steroid receptors in the raphe serotonin system of male macaques.
    Bethea CL; Phu K; Belikova Y; Bethea SC
    J Chem Neuroanat; 2015; 66-67():19-27. PubMed ID: 25908331
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Relationships between androgens, serotonin gene expression and innervation in male macaques.
    Bethea CL; Coleman K; Phu K; Reddy AP; Phu A
    Neuroscience; 2014 Aug; 274():341-56. PubMed ID: 24909896
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Androgen metabolites impact CSF amines and axonal serotonin via MAO-A and -B in male macaques.
    Bethea CL; Phu K; Kim A; Reddy AP
    Neuroscience; 2015 Aug; 301():576-89. PubMed ID: 26086546
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Locus coeruleus response to single-prolonged stress and early intervention with intranasal neuropeptide Y.
    Sabban EL; Laukova M; Alaluf LG; Olsson E; Serova LI
    J Neurochem; 2015 Dec; 135(5):975-86. PubMed ID: 26333000
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Testosterone regulation of sex steroid-related mRNAs and dopamine-related mRNAs in adolescent male rat substantia nigra.
    Purves-Tyson TD; Handelsman DJ; Double KL; Owens SJ; Bustamante S; Weickert CS
    BMC Neurosci; 2012 Aug; 13():95. PubMed ID: 22867132
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of aromatase inhibition and androgen activity on serotonin and behavior in male macaques.
    Bethea CL; Reddy AP; Robertson N; Coleman K
    Behav Neurosci; 2013 Jun; 127(3):400-14. PubMed ID: 23506438
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Androgen regulation of corticotropin-releasing hormone receptor 2 (CRHR2) mRNA expression and receptor binding in the rat brain.
    Weiser MJ; Goel N; Sandau US; Bale TL; Handa RJ
    Exp Neurol; 2008 Nov; 214(1):62-8. PubMed ID: 18706413
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Classifying chemical mode of action using gene networks and machine learning: a case study with the herbicide linuron.
    Ornostay A; Cowie AM; Hindle M; Baker CJ; Martyniuk CJ
    Comp Biochem Physiol Part D Genomics Proteomics; 2013 Dec; 8(4):263-74. PubMed ID: 24013142
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Androgen and estrogen receptor-mediated mechanisms of testosterone action in male rat pelvic autonomic ganglia.
    Purves-Tyson TD; Arshi MS; Handelsman DJ; Cheng Y; Keast JR
    Neuroscience; 2007 Aug; 148(1):92-104. PubMed ID: 17629410
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Altered expression of tyrosine hydroxylase in the locus coeruleus noradrenergic system in citalopram neonatally exposed rats and monoamine oxidase a knock out mice.
    Zhang J; Darling RD; Paul IA; Simpson KL; Chen K; Shih JC; Lin RC
    Anat Rec (Hoboken); 2011 Oct; 294(10):1685-97. PubMed ID: 21901841
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Androgen-uterine interactions: an assessment of androgen interaction with the testosterone- and estrogen-receptor systems and stimulation of uterine growth and progesterone-receptor synthesis.
    Schmidt WN; Katzenellenbogen BS
    Mol Cell Endocrinol; 1979 Aug; 15(2):91-108. PubMed ID: 499651
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neural androgen receptor regulation: effects of androgen and antiandrogen.
    Lu S; Simon NG; Wang Y; Hu S
    J Neurobiol; 1999 Dec; 41(4):505-12. PubMed ID: 10590174
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Androgenic/estrogenic balance in the male rat cerebral circulation: metabolic enzymes and sex steroid receptors.
    Gonzales RJ; Ansar S; Duckles SP; Krause DN
    J Cereb Blood Flow Metab; 2007 Nov; 27(11):1841-52. PubMed ID: 17406656
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The use of neurotoxins to characterize the rates and subcellular distributions of axonally transported dopamine-beta-hydroxylase, tyrosine hydroxylase and norepinephrine in the rat brain.
    Levin BE
    Brain Res; 1979 May; 168(2):331-50. PubMed ID: 87244
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanisms underlying alterations in norepinephrine levels in the locus coeruleus of ovariectomized rats: Modulation by estradiol valerate and black cohosh.
    Zhang J; Bai W; Wang W; Jiang H; Jin B; Liu Y; Liu S; Wang K; Jia J; Qin L
    Neuroscience; 2017 Jun; 354():110-121. PubMed ID: 28457819
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Estradiol increases alpha7 nicotinic receptor in serotonergic dorsal raphe and noradrenergic locus coeruleus neurons of macaques.
    Centeno ML; Henderson JA; Pau KY; Bethea CL
    J Comp Neurol; 2006 Jul; 497(3):489-501. PubMed ID: 16736471
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Combined aromatase inhibitor and antiandrogen treatment decreases territorial aggression in a wild songbird during the nonbreeding season.
    Soma KK; Sullivan K; Wingfield J
    Gen Comp Endocrinol; 1999 Sep; 115(3):442-53. PubMed ID: 10480996
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Relative impact of androgen and estrogen receptor activation in the effects of androgens on trabecular and cortical bone in growing male mice: a study in the androgen receptor knockout mouse model.
    Venken K; De Gendt K; Boonen S; Ophoff J; Bouillon R; Swinnen JV; Verhoeven G; Vanderschueren D
    J Bone Miner Res; 2006 Apr; 21(4):576-85. PubMed ID: 16598378
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Testosterone and year-round territorial aggression in a tropical bird.
    Hau M; Wikelski M; Soma KK; Wingfield JC
    Gen Comp Endocrinol; 2000 Jan; 117(1):20-33. PubMed ID: 10620421
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.