These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
47. Dr.seq2: A quality control and analysis pipeline for parallel single cell transcriptome and epigenome data. Zhao C; Hu S; Huo X; Zhang Y PLoS One; 2017; 12(7):e0180583. PubMed ID: 28671995 [TBL] [Abstract][Full Text] [Related]
48. Single-cell analysis of the transcriptome and its application in the characterization of stem cells and early embryos. Liu N; Liu L; Pan X Cell Mol Life Sci; 2014 Jul; 71(14):2707-15. PubMed ID: 24652479 [TBL] [Abstract][Full Text] [Related]
50. Computational analysis of cell-to-cell heterogeneity in single-cell RNA-sequencing data reveals hidden subpopulations of cells. Buettner F; Natarajan KN; Casale FP; Proserpio V; Scialdone A; Theis FJ; Teichmann SA; Marioni JC; Stegle O Nat Biotechnol; 2015 Feb; 33(2):155-60. PubMed ID: 25599176 [TBL] [Abstract][Full Text] [Related]
51. Concepts and limitations for learning developmental trajectories from single cell genomics. Tritschler S; Büttner M; Fischer DS; Lange M; Bergen V; Lickert H; Theis FJ Development; 2019 Jun; 146(12):. PubMed ID: 31249007 [TBL] [Abstract][Full Text] [Related]
52. Exploiting Single-Cell Tools in Gene and Cell Therapy. Bode D; Cull AH; Rubio-Lara JA; Kent DG Front Immunol; 2021; 12():702636. PubMed ID: 34322133 [TBL] [Abstract][Full Text] [Related]
53. Developmental scRNAseq Trajectories in Gene- and Cell-State Space-The Flatworm Example. Schmidt M; Loeffler-Wirth H; Binder H Genes (Basel); 2020 Oct; 11(10):. PubMed ID: 33081343 [TBL] [Abstract][Full Text] [Related]
54. End Sequence Analysis Toolkit (ESAT) expands the extractable information from single-cell RNA-seq data. Derr A; Yang C; Zilionis R; Sergushichev A; Blodgett DM; Redick S; Bortell R; Luban J; Harlan DM; Kadener S; Greiner DL; Klein A; Artyomov MN; Garber M Genome Res; 2016 Oct; 26(10):1397-1410. PubMed ID: 27470110 [TBL] [Abstract][Full Text] [Related]
55. Single-Cell Transcriptional Analysis. Wu AR; Wang J; Streets AM; Huang Y Annu Rev Anal Chem (Palo Alto Calif); 2017 Jun; 10(1):439-462. PubMed ID: 28301747 [TBL] [Abstract][Full Text] [Related]
56. Advances and applications of single-cell sequencing technologies. Wang Y; Navin NE Mol Cell; 2015 May; 58(4):598-609. PubMed ID: 26000845 [TBL] [Abstract][Full Text] [Related]
57. The Significance of Single-Cell Biomedicine in Stem Cells. Zhuge W; Yan F; Zhu Z; Wang X Adv Exp Med Biol; 2018; 1068():187-195. PubMed ID: 29943306 [TBL] [Abstract][Full Text] [Related]
58. Breaking the population barrier by single cell analysis: one host against one pathogen. Mills E; Avraham R Curr Opin Microbiol; 2017 Apr; 36():69-75. PubMed ID: 28214736 [TBL] [Abstract][Full Text] [Related]