These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
348 related articles for article (PubMed ID: 27083904)
1. The application of catalyst-recovered SnO2 as an anode material for lithium secondary batteries. Ryu DJ; Jung HW; Lee SH; Park DJ; Ryu KS Environ Sci Pollut Res Int; 2016 Aug; 23(15):15015-22. PubMed ID: 27083904 [TBL] [Abstract][Full Text] [Related]
2. Enhanced lithium storage in Fe2O3-SnO2-C nanocomposite anode with a breathable structure. Rahman MM; Glushenkov AM; Ramireddy T; Tao T; Chen Y Nanoscale; 2013 Jun; 5(11):4910-6. PubMed ID: 23624706 [TBL] [Abstract][Full Text] [Related]
3. Graphene/Fe2O3/SnO2 ternary nanocomposites as a high-performance anode for lithium ion batteries. Xia G; Li N; Li D; Liu R; Wang C; Li Q; Lü X; Spendelow JS; Zhang J; Wu G ACS Appl Mater Interfaces; 2013 Sep; 5(17):8607-14. PubMed ID: 23947768 [TBL] [Abstract][Full Text] [Related]
4. Mesoporous SnO2 synthesized with non-ionic surfactants as an anode material for lithium batteries. Subramanian V; Jiang JC; Smith PH; Rambabu B J Nanosci Nanotechnol; 2004; 4(1-2):125-31. PubMed ID: 15112554 [TBL] [Abstract][Full Text] [Related]
5. Layer-by-layer synthesis of γ-Fe2O3@SnO2@C porous core-shell nanorods with high reversible capacity in lithium-ion batteries. Du N; Chen Y; Zhai C; Zhang H; Yang D Nanoscale; 2013 Jun; 5(11):4744-50. PubMed ID: 23599163 [TBL] [Abstract][Full Text] [Related]
6. Mesoporous SnO2@carbon core-shell nanostructures with superior electrochemical performance for lithium ion batteries. Chen LB; Yin XM; Mei L; Li CC; Lei DN; Zhang M; Li QH; Xu Z; Xu CM; Wang TH Nanotechnology; 2012 Jan; 23(3):035402. PubMed ID: 22173372 [TBL] [Abstract][Full Text] [Related]
7. Graphene nanoribbon and nanostructured SnO2 composite anodes for lithium ion batteries. Lin J; Peng Z; Xiang C; Ruan G; Yan Z; Natelson D; Tour JM ACS Nano; 2013 Jul; 7(7):6001-6. PubMed ID: 23758123 [TBL] [Abstract][Full Text] [Related]
8. Bioinspired Carbon/SnO2 Composite Anodes Prepared from a Photonic Hierarchical Structure for Lithium Batteries. Li Y; Meng Q; Ma J; Zhu C; Cui J; Chen Z; Guo Z; Zhang T; Zhu S; Zhang D ACS Appl Mater Interfaces; 2015 Jun; 7(21):11146-54. PubMed ID: 25939407 [TBL] [Abstract][Full Text] [Related]
9. The fast filling of nano-SnO2 in CNTs by vacuum absorption: a new approach to realize cyclic durable anodes for lithium ion batteries. Hu R; Sun W; Liu H; Zeng M; Zhu M Nanoscale; 2013 Dec; 5(23):11971-9. PubMed ID: 24136654 [TBL] [Abstract][Full Text] [Related]
10. Assembly of tin oxide/graphene nanosheets into 3D hierarchical frameworks for high-performance lithium storage. Huang Y; Wu D; Han S; Li S; Xiao L; Zhang F; Feng X ChemSusChem; 2013 Aug; 6(8):1510-5. PubMed ID: 23784753 [TBL] [Abstract][Full Text] [Related]
11. MoO2-ordered mesoporous carbon nanocomposite as an anode material for lithium-ion batteries. Zeng L; Zheng C; Deng C; Ding X; Wei M ACS Appl Mater Interfaces; 2013 Mar; 5(6):2182-7. PubMed ID: 23438299 [TBL] [Abstract][Full Text] [Related]
12. Core-shell tin oxide, indium oxide, and indium tin oxide nanoparticles on silicon with tunable dispersion: electrochemical and structural characteristics as a hybrid Li-ion battery anode. Osiak MJ; Armstrong E; Kennedy T; Torres CM; Ryan KM; O'Dwyer C ACS Appl Mater Interfaces; 2013 Aug; 5(16):8195-202. PubMed ID: 23952971 [TBL] [Abstract][Full Text] [Related]
13. Interface chemistry engineering of protein-directed SnO₂ nanocrystal-based anode for lithium-ion batteries with improved performance. Wang L; Wang D; Dong Z; Zhang F; Jin J Small; 2014 Mar; 10(5):998-1007. PubMed ID: 24170365 [TBL] [Abstract][Full Text] [Related]
14. Highly monodispersed tin oxide/mesoporous starbust carbon composite as high-performance Li-ion battery anode. Chen J; Yano K ACS Appl Mater Interfaces; 2013 Aug; 5(16):7682-7. PubMed ID: 23947639 [TBL] [Abstract][Full Text] [Related]
15. Electrochemical possibility of iron compounds in used disposable heating pads and their use in lithium ion batteries. Hong JE; Oh RG; Ryu KS Environ Sci Pollut Res Int; 2016 Jul; 23(14):14656-62. PubMed ID: 27230137 [TBL] [Abstract][Full Text] [Related]
16. Synthesis and characterization of hollow alpha-Fe2O3 spheres with carbon coating for Li-ion battery. Du Z; Zhang S; Zhao J; Wu X; Lin R J Nanosci Nanotechnol; 2013 May; 13(5):3602-5. PubMed ID: 23858911 [TBL] [Abstract][Full Text] [Related]
17. Recovery and electrochemical performance in lithium secondary batteries of biochar derived from rice straw. Ryu DJ; Oh RG; Seo YD; Oh SY; Ryu KS Environ Sci Pollut Res Int; 2015 Jul; 22(14):10405-12. PubMed ID: 25821037 [TBL] [Abstract][Full Text] [Related]
18. Nanotubular Heterostructure of Tin Dioxide/Titanium Dioxide as a Binder-Free Anode in Lithium-Ion Batteries. Kim M; Lee J; Lee S; Seo S; Bae C; Shin H ChemSusChem; 2015 Jul; 8(14):2363-71. PubMed ID: 25802052 [TBL] [Abstract][Full Text] [Related]
19. Study on preparation of SnO Guo X; Wan J; Yu X; Lin Y Chemosphere; 2016 Dec; 164():421-429. PubMed ID: 27599008 [TBL] [Abstract][Full Text] [Related]
20. Controllable synthesis of SnO2@C yolk-shell nanospheres as a high-performance anode material for lithium ion batteries. Wang J; Li W; Wang F; Xia Y; Asiri AM; Zhao D Nanoscale; 2014 Mar; 6(6):3217-22. PubMed ID: 24500178 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]