These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
83 related articles for article (PubMed ID: 2708391)
41. L-NAME, nitric oxide and jejunal motility, blood flow and oxygen uptake in dogs. Alemayehu A; Lock KR; Coatney RW; Chou CC Br J Pharmacol; 1994 Jan; 111(1):205-12. PubMed ID: 8012697 [TBL] [Abstract][Full Text] [Related]
42. Experimental flow studies in an elastic Y-model. Mijovic B; Liepsch D Technol Health Care; 2003; 11(2):115-41. PubMed ID: 12697953 [TBL] [Abstract][Full Text] [Related]
43. Influence of non-Newtonian behavior of blood on flow in an elastic artery model. Dutta A; Tarbell JM J Biomech Eng; 1996 Feb; 118(1):111-9. PubMed ID: 8833082 [TBL] [Abstract][Full Text] [Related]
44. Influence of elastic nonlinearity on arterial anastomotic compliance. Schajer GS; Green SI; Davis AP; Hsiang YN J Biomech Eng; 1996 Nov; 118(4):445-51. PubMed ID: 8950647 [TBL] [Abstract][Full Text] [Related]
45. [Regional differences in viscosity, elasticity and wall buffering function in systemic arteries: pulse wave analysis of the arterial pressure-diameter relationship]. Bia D; Aguirre I; Zócalo Y; Devera L; Cabrera Fischer E; Armentano R Rev Esp Cardiol; 2005 Feb; 58(2):167-74. PubMed ID: 15743563 [TBL] [Abstract][Full Text] [Related]
46. Vascular impedance analysis in human pulmonary circulation. Zhou Q; Gao J; Huang W; Yen M Biomed Sci Instrum; 2006; 42():470-5. PubMed ID: 16817653 [TBL] [Abstract][Full Text] [Related]
47. Steady-state autoregulation of renal blood flow: a myogenic model. Lush DJ; Fray JC Am J Physiol; 1984 Jul; 247(1 Pt 2):R89-99. PubMed ID: 6331210 [TBL] [Abstract][Full Text] [Related]
48. Decreased vascular contraction and elastic stiffening after intramural lymphostasis. Bérczi V; Solti F; Schneider F; Monos E Am J Physiol; 1988 Dec; 255(6 Pt 2):H1289-94. PubMed ID: 3202192 [TBL] [Abstract][Full Text] [Related]
49. [Mechanical adaptation of muscular arteries to acute increase of blood pressure in man. Contribution of the measurement of arterial wall thickness]. Joannides R; Moore N; Richard V; Godin M; Thuillez C Arch Mal Coeur Vaiss; 1993 Aug; 86(8):1219-23. PubMed ID: 8129530 [TBL] [Abstract][Full Text] [Related]
50. Mathematical model of blood flow in a coronary capillary. Fibich G; Lanir Y; Liron N Am J Physiol; 1993 Nov; 265(5 Pt 2):H1829-40. PubMed ID: 8238597 [TBL] [Abstract][Full Text] [Related]
51. The effect of smooth muscle activation on the mechanical properties of pig carotid arteries. Hudetz AG; Márk G; Kovách AG; Monos E Acta Physiol Acad Sci Hung; 1980; 56(3):263-73. PubMed ID: 7257844 [TBL] [Abstract][Full Text] [Related]
52. Determination of the mechanical properties of the different layers of blood vessels in vivo. Fung YC; Liu SQ Proc Natl Acad Sci U S A; 1995 Mar; 92(6):2169-73. PubMed ID: 7892241 [TBL] [Abstract][Full Text] [Related]
53. Modeling interstitial flow in an artery wall allows estimation of wall shear stress on smooth muscle cells. Wang DM; Tarbell JM J Biomech Eng; 1995 Aug; 117(3):358-63. PubMed ID: 8618390 [TBL] [Abstract][Full Text] [Related]
54. Pulsatile flow inside moderately elastic arteries, its modelling and effects of elasticity. Pedrizzetti G; Domenichini F; Tortoriello A; Zovatto L Comput Methods Biomech Biomed Engin; 2002 Jun; 5(3):219-31. PubMed ID: 12186714 [TBL] [Abstract][Full Text] [Related]
55. Direct effects of smooth muscle relaxation and contraction on in vivo human brachial artery elastic properties. Bank AJ; Wilson RF; Kubo SH; Holte JE; Dresing TJ; Wang H Circ Res; 1995 Nov; 77(5):1008-16. PubMed ID: 7554135 [TBL] [Abstract][Full Text] [Related]
56. Effects of serum deprivation on the mechanical properties of adherent vascular smooth muscle cells. Hemmer JD; Dean D; Vertegel A; Langan E; LaBerge M Proc Inst Mech Eng H; 2008 Jul; 222(5):761-72. PubMed ID: 18756693 [TBL] [Abstract][Full Text] [Related]
57. A simulation environment for validating ultrasonic blood flow and vessel wall imaging based on fluid-structure interaction simulations: ultrasonic assessment of arterial distension and wall shear rate. Swillens A; Degroote J; Vierendeels J; Lovstakken L; Segers P Med Phys; 2010 Aug; 37(8):4318-30. PubMed ID: 20879592 [TBL] [Abstract][Full Text] [Related]
58. A fiber-progressive-engagement model to evaluate the composition, microstructure, and nonlinear pseudoelastic behavior of porcine arteries and decellularized derivatives. Lin CH; Kao YC; Lin YH; Ma H; Tsay RY Acta Biomater; 2016 Dec; 46():101-111. PubMed ID: 27667016 [TBL] [Abstract][Full Text] [Related]
59. [Noninvasive assessment of the elastic properties and diameter of the major arterial vessels of the extremities in atherosclerosis]. Mazhbich BI; Kuz'minykh LP; Dashevskaia AA Ter Arkh; 1985; 57(9):39-43. PubMed ID: 4082047 [TBL] [Abstract][Full Text] [Related]
60. Mechanical properties and composition of mesenteric small arteries of simulated microgravity rats with and without daily -G(x) gravitation. Gao F; Cheng JH; Bai YG; Boscolo M; Huang XF; Zhang X; Zhang LF Sheng Li Xue Bao; 2012 Apr; 64(2):107-20. PubMed ID: 22513459 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]