These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
92 related articles for article (PubMed ID: 2708400)
21. Resorption patterns of calcium-phosphate cements in bone. Gisep A; Wieling R; Bohner M; Matter S; Schneider E; Rahn B J Biomed Mater Res A; 2003 Sep; 66(3):532-40. PubMed ID: 12918036 [TBL] [Abstract][Full Text] [Related]
22. Bioresorption behavior of tetracalcium phosphate-derived calcium phosphate cement implanted in femur of rabbits. Tsai CH; Lin RM; Ju CP; Chern Lin JH Biomaterials; 2008 Mar; 29(8):984-93. PubMed ID: 18096221 [TBL] [Abstract][Full Text] [Related]
23. Hydroxyapatite impregnated bone cement: in vitro and in vivo studies. Kwon SY; Kim YS; Woo YK; Kim SS; Park JB Biomed Mater Eng; 1997; 7(2):129-40. PubMed ID: 9262826 [TBL] [Abstract][Full Text] [Related]
24. Biocompatibility and resorption of a brushite calcium phosphate cement. Theiss F; Apelt D; Brand B; Kutter A; Zlinszky K; Bohner M; Matter S; Frei C; Auer JA; von Rechenberg B Biomaterials; 2005 Jul; 26(21):4383-94. PubMed ID: 15701367 [TBL] [Abstract][Full Text] [Related]
25. Mechanical strength of calcium phosphate cement in vivo and in vitro. Yamamoto H; Niwa S; Hori M; Hattori T; Sawai K; Aoki S; Hirano M; Takeuchi H Biomaterials; 1998 Sep; 19(17):1587-91. PubMed ID: 9830984 [TBL] [Abstract][Full Text] [Related]
26. Self-setting bioactive calcium-magnesium phosphate cement with high strength and degradability for bone regeneration. Wu F; Wei J; Guo H; Chen F; Hong H; Liu C Acta Biomater; 2008 Nov; 4(6):1873-84. PubMed ID: 18662897 [TBL] [Abstract][Full Text] [Related]
27. [Biomechanical study on the composite of allogenic decalcified bone matrix gelatin and bone cement]. Hu YS; Fan QY; Zhou Y; Liu GJ; Zhang DZ Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2002 Mar; 16(2):97-9. PubMed ID: 11944530 [TBL] [Abstract][Full Text] [Related]
28. Reconstruction of calvarial defect using a tricalcium phosphate-oligomeric proanthocyanidins cross-linked gelatin composite. Chen KY; Shyu PC; Dong GC; Chen YS; Kuo WW; Yao CH Biomaterials; 2009 Mar; 30(9):1682-8. PubMed ID: 19136152 [TBL] [Abstract][Full Text] [Related]
29. Vertebroplasty comparing injectable calcium phosphate cement compared with polymethylmethacrylate in a unique canine vertebral body large defect model. Turner TM; Urban RM; Singh K; Hall DJ; Renner SM; Lim TH; Tomlinson MJ; An HS Spine J; 2008; 8(3):482-7. PubMed ID: 18455113 [TBL] [Abstract][Full Text] [Related]
30. Porous hydroxyapatite and tricalcium phosphate cylinders with two different pore size ranges implanted in the cancellous bone of rabbits. A comparative histomorphometric and histologic study of bony ingrowth and implant substitution. Eggli PS; Müller W; Schenk RK Clin Orthop Relat Res; 1988 Jul; (232):127-38. PubMed ID: 2838207 [TBL] [Abstract][Full Text] [Related]
34. Introduction of gelatin microspheres into an injectable calcium phosphate cement. Habraken WJ; de Jonge LT; Wolke JG; Yubao L; Mikos AG; Jansen JA J Biomed Mater Res A; 2008 Dec; 87(3):643-55. PubMed ID: 18189298 [TBL] [Abstract][Full Text] [Related]
35. The biodegradation mechanism of calcium phosphate biomaterials in bone. Lu J; Descamps M; Dejou J; Koubi G; Hardouin P; Lemaitre J; Proust JP J Biomed Mater Res; 2002; 63(4):408-12. PubMed ID: 12115748 [TBL] [Abstract][Full Text] [Related]
36. Is hydroxyapatite cement an alternative for allograft bone chips in bone grafting procedures? A mechanical and histological study in a rabbit cancellous bone defect model. Voor MJ; Arts JJ; Klein SA; Walschot LH; Verdonschot N; Buma P J Biomed Mater Res B Appl Biomater; 2004 Nov; 71(2):398-407. PubMed ID: 15389506 [TBL] [Abstract][Full Text] [Related]
37. Biodegradation behavior of various calcium phosphate materials in bone tissue. Klein CP; Driessen AA; de Groot K; van den Hooff A J Biomed Mater Res; 1983 Sep; 17(5):769-84. PubMed ID: 6311838 [TBL] [Abstract][Full Text] [Related]
38. Evaluation of injectable strontium-containing borate bioactive glass cement with enhanced osteogenic capacity in a critical-sized rabbit femoral condyle defect model. Zhang Y; Cui X; Zhao S; Wang H; Rahaman MN; Liu Z; Huang W; Zhang C ACS Appl Mater Interfaces; 2015 Feb; 7(4):2393-403. PubMed ID: 25591177 [TBL] [Abstract][Full Text] [Related]
39. Bone bonding ability and handling properties of a titania-polymethylmethacrylate (PMMA) composite bioactive bone cement modified with a unique PMMA powder. Fukuda C; Goto K; Imamura M; Neo M; Nakamura T Acta Biomater; 2011 Oct; 7(10):3595-600. PubMed ID: 21704200 [TBL] [Abstract][Full Text] [Related]
40. Short- and long-term effects of vertebroplastic bone cement on cancellous bone. Quan R; Ni Y; Zhang L; Xu J; Zheng X; Yang D J Mech Behav Biomed Mater; 2014 Jul; 35():102-10. PubMed ID: 24762857 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]