These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
307 related articles for article (PubMed ID: 27084021)
1. Application of AlkBGT and AlkL from Pseudomonas putida GPo1 for Selective Alkyl Ester ω-Oxyfunctionalization in Escherichia coli. van Nuland YM; Eggink G; Weusthuis RA Appl Environ Microbiol; 2016 Jul; 82(13):3801-3807. PubMed ID: 27084021 [TBL] [Abstract][Full Text] [Related]
2. Reaction and catalyst engineering to exploit kinetically controlled whole-cell multistep biocatalysis for terminal FAME oxyfunctionalization. Schrewe M; Julsing MK; Lange K; Czarnotta E; Schmid A; Bühler B Biotechnol Bioeng; 2014 Sep; 111(9):1820-30. PubMed ID: 24852702 [TBL] [Abstract][Full Text] [Related]
3. Outer membrane protein AlkL boosts biocatalytic oxyfunctionalization of hydrophobic substrates in Escherichia coli. Julsing MK; Schrewe M; Cornelissen S; Hermann I; Schmid A; Bühler B Appl Environ Microbiol; 2012 Aug; 78(16):5724-33. PubMed ID: 22685130 [TBL] [Abstract][Full Text] [Related]
4. Expansion of the ω-oxidation system AlkBGTL of Pseudomonas putida GPo1 with AlkJ and AlkH results in exclusive mono-esterified dicarboxylic acid production in E. coli. van Nuland YM; de Vogel FA; Eggink G; Weusthuis RA Microb Biotechnol; 2017 May; 10(3):594-603. PubMed ID: 28321989 [TBL] [Abstract][Full Text] [Related]
5. Combination of ester biosynthesis and ω-oxidation for production of mono-ethyl dicarboxylic acids and di-ethyl esters in a whole-cell biocatalytic setup with Escherichia coli. van Nuland YM; Eggink G; Weusthuis RA Microb Cell Fact; 2017 Nov; 16(1):185. PubMed ID: 29096635 [TBL] [Abstract][Full Text] [Related]
6. Maximization of cell viability rather than biocatalyst activity improves whole-cell ω-oxyfunctionalization performance. Kadisch M; Julsing MK; Schrewe M; Jehmlich N; Scheer B; von Bergen M; Schmid A; Bühler B Biotechnol Bioeng; 2017 Apr; 114(4):874-884. PubMed ID: 27883174 [TBL] [Abstract][Full Text] [Related]
7. Biosynthesis of Medium-Chain ω-Hydroxy Fatty Acids by AlkBGT of He Q; Bennett GN; San KY; Wu H Front Bioeng Biotechnol; 2019; 7():273. PubMed ID: 31681749 [TBL] [Abstract][Full Text] [Related]
8. Stabilization and scale-up of photosynthesis-driven ω-hydroxylation of nonanoic acid methyl ester by two-liquid phase whole-cell biocatalysis. Hoschek A; Bühler B; Schmid A Biotechnol Bioeng; 2019 Aug; 116(8):1887-1900. PubMed ID: 31038213 [TBL] [Abstract][Full Text] [Related]
9. Integrated engineering of β-oxidation reversal and ω-oxidation pathways for the synthesis of medium chain ω-functionalized carboxylic acids. Clomburg JM; Blankschien MD; Vick JE; Chou A; Kim S; Gonzalez R Metab Eng; 2015 Mar; 28():202-212. PubMed ID: 25638687 [TBL] [Abstract][Full Text] [Related]
10. Synthesis of medium chain length fatty acid ethyl esters in engineered Escherichia coli using endogenously produced medium chain fatty acids. Fan L; Liu J; Nie K; Liu L; Wang F; Tan T; Deng L Enzyme Microb Technol; 2013 Jul; 53(2):128-33. PubMed ID: 23769314 [TBL] [Abstract][Full Text] [Related]
11. Identification and use of an alkane transporter plug-in for applications in biocatalysis and whole-cell biosensing of alkanes. Grant C; Deszcz D; Wei YC; Martínez-Torres RJ; Morris P; Folliard T; Sreenivasan R; Ward J; Dalby P; Woodley JM; Baganz F Sci Rep; 2014 Jul; 4():5844. PubMed ID: 25068650 [TBL] [Abstract][Full Text] [Related]
12. Biosynthesis of ω-hydroxy fatty acids and related chemicals from natural fatty acids by recombinant Escherichia coli. Kim SK; Park YC Appl Microbiol Biotechnol; 2019 Jan; 103(1):191-199. PubMed ID: 30417307 [TBL] [Abstract][Full Text] [Related]
13. Oxidation of methyl tert-butyl ether by alkane hydroxylase in dicyclopropylketone-induced and n-octane-grown Pseudomonas putida GPo1. Smith CA; Hyman MR Appl Environ Microbiol; 2004 Aug; 70(8):4544-50. PubMed ID: 15294784 [TBL] [Abstract][Full Text] [Related]
14. Metabolic engineering of Pseudomonas putida KT2440 for medium-chain-length fatty alcohol and ester production from fatty acids. Lu C; Akwafo EO; Wijffels RH; Martins Dos Santos VAP; Weusthuis RA Metab Eng; 2023 Jan; 75():110-118. PubMed ID: 36494025 [TBL] [Abstract][Full Text] [Related]
15. Biocatalytic, one-pot diterminal oxidation and esterification of n-alkanes for production of α,ω-diol and α,ω-dicarboxylic acid esters. van Nuland YM; de Vogel FA; Scott EL; Eggink G; Weusthuis RA Metab Eng; 2017 Nov; 44():134-142. PubMed ID: 28993212 [TBL] [Abstract][Full Text] [Related]
16. Production of 12-hydroxy dodecanoic acid methyl ester using a signal peptide sequence-optimized transporter AlkL and a novel monooxygenase. Yoo HW; Kim J; Patil MD; Park BG; Joo SY; Yun H; Kim BG Bioresour Technol; 2019 Nov; 291():121812. PubMed ID: 31376668 [TBL] [Abstract][Full Text] [Related]
17. Engineered P450 BM3 and cpADH5 coupled cascade reaction for β-oxo fatty acid methyl ester production in whole cells. Ensari Y; de Almeida Santos G; Ruff AJ; Schwaneberg U Enzyme Microb Technol; 2020 Aug; 138():109555. PubMed ID: 32527525 [TBL] [Abstract][Full Text] [Related]
18. Engineering Escherichia coli for Conversion of Glucose to Medium-Chain ω-Hydroxy Fatty Acids and α,ω-Dicarboxylic Acids. Bowen CH; Bonin J; Kogler A; Barba-Ostria C; Zhang F ACS Synth Biol; 2016 Mar; 5(3):200-6. PubMed ID: 26669968 [TBL] [Abstract][Full Text] [Related]
19. Production of Long-Chain α,ω-Dicarboxylic Acids by Engineered Escherichia coli from Renewable Fatty Acids and Plant Oils. Sathesh-Prabu C; Lee SK J Agric Food Chem; 2015 Sep; 63(37):8199-208. PubMed ID: 26359801 [TBL] [Abstract][Full Text] [Related]
20. Oxyfunctionalization of aliphatic compounds by a recombinant peroxygenase from Coprinopsis cinerea. Babot ED; del Río JC; Kalum L; Martínez AT; Gutiérrez A Biotechnol Bioeng; 2013 Sep; 110(9):2323-32. PubMed ID: 23519689 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]