These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

251 related articles for article (PubMed ID: 2708405)

  • 41. Synthesis and characterization of poly(methyl methacrylate)-based experimental bone cements reinforced with TiO2-SrO nanotubes.
    Khaled SM; Charpentier PA; Rizkalla AS
    Acta Biomater; 2010 Aug; 6(8):3178-86. PubMed ID: 20170759
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Effect of pre- and postpolymerization on flexural strength and elastic modulus of impregnated, fiber-reinforced denture base acrylic resins.
    Bertassoni LE; Marshall GW; de Souza EM; Rached RN
    J Prosthet Dent; 2008 Dec; 100(6):449-57. PubMed ID: 19033029
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A fractographic analysis of in vivo poly(methyl methacrylate) bone cement failure mechanisms.
    Topoleski LD; Ducheyne P; Cuckler JM
    J Biomed Mater Res; 1990 Feb; 24(2):135-54. PubMed ID: 2329111
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Hydroxyapatite impregnated bone cement: in vitro and in vivo studies.
    Kwon SY; Kim YS; Woo YK; Kim SS; Park JB
    Biomed Mater Eng; 1997; 7(2):129-40. PubMed ID: 9262826
    [TBL] [Abstract][Full Text] [Related]  

  • 45. [Improving fiber adhesion by surface oxidation in carbon fiber reinforced bone cement].
    Hopf T; Büttner S; Brill W
    Z Orthop Ihre Grenzgeb; 1989; 127(2):248-52. PubMed ID: 2735112
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Improved bonding strength of polyethylene/polymethylmetacrylate bone cement--a preliminary study.
    Khang G; Kang YH; Park JB; Lee HB
    Biomed Mater Eng; 1996; 6(5):335-44. PubMed ID: 8986354
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Effects of fibre reinforcement on the mechanical properties of brushite cement.
    Gorst NJ; Perrie Y; Gbureck U; Hutton AL; Hofmann MP; Grover LM; Barralet JE
    Acta Biomater; 2006 Jan; 2(1):95-102. PubMed ID: 16701863
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Improved mechanical properties of acrylic bone cement with short titanium fiber reinforcement.
    Kotha SP; Li C; McGinn P; Schmid SR; Mason JJ
    J Mater Sci Mater Med; 2006 Dec; 17(12):1403-9. PubMed ID: 17143773
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Surface and chemical properties of surface-modified UHMWPE powder and mechanical and thermal properties of it impregnated PMMA bone cement, III: effect of various ratios of initiator/inhibitor on the surface modification of UHMWPE powder.
    Yang DH; Yoon GH; Kim SH; Rhee JM; Kim YS; Khang G
    J Biomater Sci Polym Ed; 2005; 16(9):1121-38. PubMed ID: 16231603
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Surface treated polyethylene fibres as reinforcement for acrylic resins.
    Andreopoulos AG; Papaspyrides CD; Tsilibounidis S
    Biomaterials; 1991 Jan; 12(1):83-7. PubMed ID: 2009351
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Interfacial strength of compression-molded specimens between PMMA powder and PMMA/MMA monomer solution-treated ultra-high molecular weight polyethylene (UHMWPE) powder.
    Park KD; Park JB
    J Biomed Mater Res; 2000; 53(6):737-47. PubMed ID: 11074434
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Improved fatigue life of acrylic bone cements reinforced with zirconia fibers.
    Kane RJ; Yue W; Mason JJ; Roeder RK
    J Mech Behav Biomed Mater; 2010 Oct; 3(7):504-11. PubMed ID: 20696415
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Interfacial optimization of fiber-reinforced hydrogel composites for soft fibrous tissue applications.
    Holloway JL; Lowman AM; VanLandingham MR; Palmese GR
    Acta Biomater; 2014 Aug; 10(8):3581-9. PubMed ID: 24814880
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Denture base poly(methyl methacrylate) reinforced with ultra-thin modulus polyethylene fibers.
    Braden M; Davy KW; Parker S; Ladizesky NH; Ward IM
    Br Dent J; 1988 Feb; 164(4):109-13. PubMed ID: 3279982
    [No Abstract]   [Full Text] [Related]  

  • 55. Slow crack growth in acrylic bone cement.
    Beaumont PW; Young RJ
    J Biomed Mater Res; 1975 Sep; 9(5):423-39. PubMed ID: 1176518
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Surface and chemical properties of surface-modified UHMWPE powder and mechanical and thermal properties of its impregnated PMMA bone cement, IV: effect of MMA/accelerator on the surface modification of UHMWPE powder.
    Yang DH; Ko JT; Kim YS; Kim MS; Shin HS; Rhee JM; Khang G; Lee HB
    J Biomater Sci Polym Ed; 2006; 17(7):807-20. PubMed ID: 16909947
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The effect of centrifugation on the fracture properties of acrylic bone cements.
    Rimnac CM; Wright TM; McGill DL
    J Bone Joint Surg Am; 1986 Feb; 68(2):281-7. PubMed ID: 3944165
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Effect of MMA-g-UHMWPE grafted fiber on mechanical properties of acrylic bone cement.
    Yang JM; Huang PY; Yang MC; Lo SK
    J Biomed Mater Res; 1997; 38(4):361-9. PubMed ID: 9421758
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Improved mechanical properties of acrylic bone cement with short titanium fiber reinforcement.
    Kotha SP; Li C; McGinn P; Schmid SR; Mason JJ
    J Mater Sci Mater Med; 2006 Aug; 17(8):743-8. PubMed ID: 16897167
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Bending and fracture toughness of woven self-reinforced composite poly(methyl methacrylate).
    Wright DD; Lautenschlager EP; Gilbert JL
    J Biomed Mater Res; 1997 Sep; 36(4):441-53. PubMed ID: 9294760
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.