These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 2708412)

  • 1. Brain biocompatibility of a biodegradable, controlled-release polymer in rats.
    Tamargo RJ; Epstein JI; Reinhard CS; Chasin M; Brem H
    J Biomed Mater Res; 1989 Feb; 23(2):253-66. PubMed ID: 2708412
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biocompatibility of a biodegradable, controlled-release polymer in the rabbit brain.
    Brem H; Kader A; Epstein JI; Tamargo RJ; Domb A; Langer R; Leong KW
    Sel Cancer Ther; 1989; 5(2):55-65. PubMed ID: 2772427
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biocompatibility and safety evaluation of a ricinoleic acid-based poly(ester-anhydride) copolymer after implantation in rats.
    Vaisman B; Motiei M; Nyska A; Domb AJ
    J Biomed Mater Res A; 2010 Feb; 92(2):419-31. PubMed ID: 19191319
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biodegradable polymers for controlled delivery of chemotherapy with and without radiation therapy in the monkey brain.
    Brem H; Tamargo RJ; Olivi A; Pinn M; Weingart JD; Wharam M; Epstein JI
    J Neurosurg; 1994 Feb; 80(2):283-90. PubMed ID: 8283268
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intracranial drug-delivery scaffolds: biocompatibility evaluation of sucrose acetate isobutyrate gels.
    Lee J; Jallo GI; Penno MB; Gabrielson KL; Young GD; Johnson RM; Gillis EM; Rampersaud C; Carson BS; Guarnieri M
    Toxicol Appl Pharmacol; 2006 Aug; 215(1):64-70. PubMed ID: 16630637
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Implantable polymers for tirapazamine treatments of experimental intracranial malignant glioma.
    Yuan X; Tabassi K; Williams JA
    Radiat Oncol Investig; 1999; 7(4):218-30. PubMed ID: 10492162
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vivo versus in vitro degradation of controlled release polymers for intracranial surgical therapy.
    Wu MP; Tamada JA; Brem H; Langer R
    J Biomed Mater Res; 1994 Mar; 28(3):387-95. PubMed ID: 8077254
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Implantable biodegradable polymers for IUdR radiosensitization of experimental human malignant glioma.
    Williams JA; Dillehay LE; Tabassi K; Sipos E; Fahlman C; Brem H
    J Neurooncol; 1997 May; 32(3):181-92. PubMed ID: 9049879
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interstitial taxol delivered from a biodegradable polymer implant against experimental malignant glioma.
    Walter KA; Cahan MA; Gur A; Tyler B; Hilton J; Colvin OM; Burger PC; Domb A; Brem H
    Cancer Res; 1994 Apr; 54(8):2207-12. PubMed ID: 7909720
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The brain tissue response to biodegradable poly(methylidene malonate 2.1.2)-based microspheres in the rat.
    Fournier E; Passirani C; Colin N; Sagodira S; Menei P; Benoit JP; Montero-Menei CN
    Biomaterials; 2006 Oct; 27(28):4963-74. PubMed ID: 16759690
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Basic study of biodegradable controlled release chemotherapy].
    Zhang T; Zhang Z; Liu Z; Liu S; Zhang Y; Zhou Z; Lei T
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2003 Dec; 20(4):686-8, 707. PubMed ID: 14716877
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vivo biodegradability and biocompatibility evaluation of novel alanine ester based polyphosphazenes in a rat model.
    Sethuraman S; Nair LS; El-Amin S; Farrar R; Nguyen MT; Singh A; Allcock HR; Greish YE; Brown PW; Laurencin CT
    J Biomed Mater Res A; 2006 Jun; 77(4):679-87. PubMed ID: 16514601
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bioerodible polyanhydrides as drug-carrier matrices. II. Biocompatibility and chemical reactivity.
    Leong KW; D'Amore PD; Marletta M; Langer R
    J Biomed Mater Res; 1986 Jan; 20(1):51-64. PubMed ID: 3949823
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthetic, implantable, biodegradable polymers for controlled release of radiosensitizers.
    Yuan X; Fahlman C; Tabassi K; Williams JA
    Cancer Biother Radiopharm; 1999 Jun; 14(3):177-86. PubMed ID: 10850302
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Parallel synthesis and high throughput dissolution testing of biodegradable polyanhydride copolymers.
    Vogel BM; Cabral JT; Eidelman N; Narasimhan B; Mallapragada SK
    J Comb Chem; 2005; 7(6):921-8. PubMed ID: 16283803
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biocompatibility of a polymeric implant for the treatment of osteomyelitis.
    Brin YS; Nyska A; Domb AJ; Golenser J; Mizrahi B; Nyska M
    J Biomater Sci Polym Ed; 2009; 20(7-8):1081-90. PubMed ID: 19454170
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biodegradable polymers in controlled drug delivery.
    Heller J
    Crit Rev Ther Drug Carrier Syst; 1984; 1(1):39-90. PubMed ID: 6400195
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Poly(anhydride) administration in high doses in vivo: studies of biocompatibility and toxicology.
    Laurencin C; Domb A; Morris C; Brown V; Chasin M; McConnell R; Lange N; Langer R
    J Biomed Mater Res; 1990 Nov; 24(11):1463-81. PubMed ID: 2279981
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Poly(sebacic acid-co-ricinoleic acid) biodegradable carrier for paclitaxel: in vitro release and in vivo toxicity.
    Shikanov A; Vaisman B; Krasko MY; Nyska A; Domb AJ
    J Biomed Mater Res A; 2004 Apr; 69(1):47-54. PubMed ID: 14999750
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis and characterization of polyanhydride for local BCNU delivery carriers.
    Kim MS; Seo KS; Seong HS; Cho SH; Lee HB; Hong KD; Kim SK; Khang G
    Biomed Mater Eng; 2005; 15(3):229-38. PubMed ID: 15912003
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.