BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 2708412)

  • 1. Brain biocompatibility of a biodegradable, controlled-release polymer in rats.
    Tamargo RJ; Epstein JI; Reinhard CS; Chasin M; Brem H
    J Biomed Mater Res; 1989 Feb; 23(2):253-66. PubMed ID: 2708412
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biocompatibility of a biodegradable, controlled-release polymer in the rabbit brain.
    Brem H; Kader A; Epstein JI; Tamargo RJ; Domb A; Langer R; Leong KW
    Sel Cancer Ther; 1989; 5(2):55-65. PubMed ID: 2772427
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biocompatibility and safety evaluation of a ricinoleic acid-based poly(ester-anhydride) copolymer after implantation in rats.
    Vaisman B; Motiei M; Nyska A; Domb AJ
    J Biomed Mater Res A; 2010 Feb; 92(2):419-31. PubMed ID: 19191319
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biodegradable polymers for controlled delivery of chemotherapy with and without radiation therapy in the monkey brain.
    Brem H; Tamargo RJ; Olivi A; Pinn M; Weingart JD; Wharam M; Epstein JI
    J Neurosurg; 1994 Feb; 80(2):283-90. PubMed ID: 8283268
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intracranial drug-delivery scaffolds: biocompatibility evaluation of sucrose acetate isobutyrate gels.
    Lee J; Jallo GI; Penno MB; Gabrielson KL; Young GD; Johnson RM; Gillis EM; Rampersaud C; Carson BS; Guarnieri M
    Toxicol Appl Pharmacol; 2006 Aug; 215(1):64-70. PubMed ID: 16630637
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Implantable polymers for tirapazamine treatments of experimental intracranial malignant glioma.
    Yuan X; Tabassi K; Williams JA
    Radiat Oncol Investig; 1999; 7(4):218-30. PubMed ID: 10492162
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vivo versus in vitro degradation of controlled release polymers for intracranial surgical therapy.
    Wu MP; Tamada JA; Brem H; Langer R
    J Biomed Mater Res; 1994 Mar; 28(3):387-95. PubMed ID: 8077254
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Implantable biodegradable polymers for IUdR radiosensitization of experimental human malignant glioma.
    Williams JA; Dillehay LE; Tabassi K; Sipos E; Fahlman C; Brem H
    J Neurooncol; 1997 May; 32(3):181-92. PubMed ID: 9049879
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interstitial taxol delivered from a biodegradable polymer implant against experimental malignant glioma.
    Walter KA; Cahan MA; Gur A; Tyler B; Hilton J; Colvin OM; Burger PC; Domb A; Brem H
    Cancer Res; 1994 Apr; 54(8):2207-12. PubMed ID: 7909720
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The brain tissue response to biodegradable poly(methylidene malonate 2.1.2)-based microspheres in the rat.
    Fournier E; Passirani C; Colin N; Sagodira S; Menei P; Benoit JP; Montero-Menei CN
    Biomaterials; 2006 Oct; 27(28):4963-74. PubMed ID: 16759690
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Basic study of biodegradable controlled release chemotherapy].
    Zhang T; Zhang Z; Liu Z; Liu S; Zhang Y; Zhou Z; Lei T
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2003 Dec; 20(4):686-8, 707. PubMed ID: 14716877
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vivo biodegradability and biocompatibility evaluation of novel alanine ester based polyphosphazenes in a rat model.
    Sethuraman S; Nair LS; El-Amin S; Farrar R; Nguyen MT; Singh A; Allcock HR; Greish YE; Brown PW; Laurencin CT
    J Biomed Mater Res A; 2006 Jun; 77(4):679-87. PubMed ID: 16514601
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bioerodible polyanhydrides as drug-carrier matrices. II. Biocompatibility and chemical reactivity.
    Leong KW; D'Amore PD; Marletta M; Langer R
    J Biomed Mater Res; 1986 Jan; 20(1):51-64. PubMed ID: 3949823
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthetic, implantable, biodegradable polymers for controlled release of radiosensitizers.
    Yuan X; Fahlman C; Tabassi K; Williams JA
    Cancer Biother Radiopharm; 1999 Jun; 14(3):177-86. PubMed ID: 10850302
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Parallel synthesis and high throughput dissolution testing of biodegradable polyanhydride copolymers.
    Vogel BM; Cabral JT; Eidelman N; Narasimhan B; Mallapragada SK
    J Comb Chem; 2005; 7(6):921-8. PubMed ID: 16283803
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biocompatibility of a polymeric implant for the treatment of osteomyelitis.
    Brin YS; Nyska A; Domb AJ; Golenser J; Mizrahi B; Nyska M
    J Biomater Sci Polym Ed; 2009; 20(7-8):1081-90. PubMed ID: 19454170
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biodegradable polymers in controlled drug delivery.
    Heller J
    Crit Rev Ther Drug Carrier Syst; 1984; 1(1):39-90. PubMed ID: 6400195
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Poly(anhydride) administration in high doses in vivo: studies of biocompatibility and toxicology.
    Laurencin C; Domb A; Morris C; Brown V; Chasin M; McConnell R; Lange N; Langer R
    J Biomed Mater Res; 1990 Nov; 24(11):1463-81. PubMed ID: 2279981
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Poly(sebacic acid-co-ricinoleic acid) biodegradable carrier for paclitaxel: in vitro release and in vivo toxicity.
    Shikanov A; Vaisman B; Krasko MY; Nyska A; Domb AJ
    J Biomed Mater Res A; 2004 Apr; 69(1):47-54. PubMed ID: 14999750
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis and characterization of polyanhydride for local BCNU delivery carriers.
    Kim MS; Seo KS; Seong HS; Cho SH; Lee HB; Hong KD; Kim SK; Khang G
    Biomed Mater Eng; 2005; 15(3):229-38. PubMed ID: 15912003
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.