These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

72 related articles for article (PubMed ID: 2708413)

  • 21. Biodegradation of random copolypeptide membranes consisting of N-hydroxyalkyl L-glutamine as one component.
    Hayashi T; Iizuka Y; Oya M; Iwatsuki M
    Biomaterials; 1993 Jun; 14(7):497-502. PubMed ID: 8329521
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Biocompatibility and drug release behavior of spontaneously formed phospholipid polymer hydrogels.
    Kimura M; Takai M; Ishihara K
    J Biomed Mater Res A; 2007 Jan; 80(1):45-54. PubMed ID: 16958047
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Tissue anti-adhesion potential of biodegradable PELA electrospun membranes.
    Yang DJ; Chen F; Xiong ZC; Xiong CD; Wang YZ
    Acta Biomater; 2009 Sep; 5(7):2467-74. PubMed ID: 19427825
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Characterization and evaluation of chitosan matrix for in vitro growth of MCF-7 breast cancer cell lines.
    Dhiman HK; Ray AR; Panda AK
    Biomaterials; 2004 Sep; 25(21):5147-54. PubMed ID: 15109838
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Protein adsorption and endothelial cell attachment and proliferation on PAPI-based additive modified poly(ether urethane ureas).
    Brunstedt MR; Ziats NP; Schubert M; Stack S; Rose-Caprara V; Hiltner PA; Anderson JM
    J Biomed Mater Res; 1993 Apr; 27(4):499-510. PubMed ID: 8463351
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Preparation and development of block copolypeptide vesicles and hydrogels for biological and medical applications.
    Deming TJ
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2014; 6(3):283-97. PubMed ID: 24604764
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Adhesion behavior of rat lymphocyte subpopulations (B cell and T cell) on the surface of polystyrene/polypeptide graft copolymer.
    Maeda M; Kimura M; Inoue S; Kataoka K; Okano T; Sakurai Y
    J Biomed Mater Res; 1986 Jan; 20(1):25-35. PubMed ID: 3485099
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Adhesion behavior of peritoneal cells on the surface of self-assembled triblock copolymer hydrogels.
    Tanaka S; Ogura A; Kaneko T; Murata Y; Akashi M
    Biomacromolecules; 2004; 5(6):2447-55. PubMed ID: 15530062
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effect of chemistry and morphology on the biofunctionality of self-assembling diblock copolypeptide hydrogels.
    Pakstis LM; Ozbas B; Hales KD; Nowak AP; Deming TJ; Pochan D
    Biomacromolecules; 2004; 5(2):312-8. PubMed ID: 15002989
    [TBL] [Abstract][Full Text] [Related]  

  • 30. New modified polyetheretherketone membrane for liver cell culture in biohybrid systems: adhesion and specific functions of isolated hepatocytes.
    De Bartolo L; Morelli S; Rende M; Gordano A; Drioli E
    Biomaterials; 2004 Aug; 25(17):3621-9. PubMed ID: 15020136
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The effect of pore size on cell adhesion in collagen-GAG scaffolds.
    O'Brien FJ; Harley BA; Yannas IV; Gibson LJ
    Biomaterials; 2005 Feb; 26(4):433-41. PubMed ID: 15275817
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Esophageal epithelial cell interaction with synthetic and natural scaffolds for tissue engineering.
    Beckstead BL; Pan S; Bhrany AD; Bratt-Leal AM; Ratner BD; Giachelli CM
    Biomaterials; 2005 Nov; 26(31):6217-28. PubMed ID: 15913763
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effect of hydrophilic and hydrophobic microdomains on mode of interaction between block polymer and blood platelets.
    Okano T; Nishiyama S; Shinohara I; Akaike T; Sakurai Y; Kataoka K; Tsuruta T
    J Biomed Mater Res; 1981 May; 15(3):393-402. PubMed ID: 7348273
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Tunable, Functional Diblock Copolypeptide Hydrogels Based on Methionine Homologs.
    Negri GE; Gharakhanian EG; Deming TJ
    Macromol Biosci; 2020 Jan; 20(1):e1900243. PubMed ID: 31486263
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Permeability of synthetic polypeptide membranes. I. Poly-D,L-leucine-co-D,L-methionine.
    Klein E; May PD; Smith JK; Leger N
    Biopolymers; 1971; 10(4):647-55. PubMed ID: 5552137
    [No Abstract]   [Full Text] [Related]  

  • 36. Helix-coil transition in copolypeptides. I. Poly (gamma-benzyl-co-gamma-methyl L-glutamate).
    Roig A; Cortijo M
    Biopolymers; 1971; 10(2):321-8. PubMed ID: 5545526
    [No Abstract]   [Full Text] [Related]  

  • 37. Biocompatibility of amphiphilic diblock copolypeptide hydrogels in the central nervous system.
    Yang CY; Song B; Ao Y; Nowak AP; Abelowitz RB; Korsak RA; Havton LA; Deming TJ; Sofroniew MV
    Biomaterials; 2009 May; 30(15):2881-98. PubMed ID: 19251318
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Vascular smooth muscle cells on polyelectrolyte multilayers: hydrophobicity-directed adhesion and growth.
    Salloum DS; Olenych SG; Keller TC; Schlenoff JB
    Biomacromolecules; 2005; 6(1):161-7. PubMed ID: 15638516
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Block copolypeptides prepared by N-carboxyanhydride ring-opening polymerization.
    Habraken GJ; Heise A; Thornton PD
    Macromol Rapid Commun; 2012 Feb; 33(4):272-86. PubMed ID: 22290847
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Enzyme-triggered cargo release from methionine sulfoxide containing copolypeptide vesicles.
    Rodriguez AR; Kramer JR; Deming TJ
    Biomacromolecules; 2013 Oct; 14(10):3610-4. PubMed ID: 23980867
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.