These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 27084359)

  • 1. Modelling the effect of temperature on the seasonal population dynamics of temperate mosquitoes.
    Ewing DA; Cobbold CA; Purse BV; Nunn MA; White SM
    J Theor Biol; 2016 Jul; 400():65-79. PubMed ID: 27084359
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Uncovering mechanisms behind mosquito seasonality by integrating mathematical models and daily empirical population data: Culex pipiens in the UK.
    Ewing DA; Purse BV; Cobbold CA; Schäfer SM; White SM
    Parasit Vectors; 2019 Feb; 12(1):74. PubMed ID: 30732629
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A generic weather-driven model to predict mosquito population dynamics applied to species of Anopheles, Culex and Aedes genera of southern France.
    Ezanno P; Aubry-Kientz M; Arnoux S; Cailly P; L'Ambert G; Toty C; Balenghien T; Tran A
    Prev Vet Med; 2015 Jun; 120(1):39-50. PubMed ID: 25623972
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Climatic effects on mosquito abundance in Mediterranean wetlands.
    Roiz D; Ruiz S; Soriguer R; Figuerola J
    Parasit Vectors; 2014 Jul; 7():333. PubMed ID: 25030527
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Environmental forcing shapes regional house mosquito synchrony in a warming temperate island.
    Chaves LF; Higa Y; Lee SH; Jeong JY; Heo ST; Kim M; Minakawa N; Lee KH
    Environ Entomol; 2013 Aug; 42(4):605-13. PubMed ID: 23905723
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stage and age structured Aedes vexans and Culex pipiens (Diptera: Culicidae) climate-dependent matrix population model.
    Lončarić Z; K Hackenberger B
    Theor Popul Biol; 2013 Feb; 83():82-94. PubMed ID: 22971424
    [TBL] [Abstract][Full Text] [Related]  

  • 7. How does the dengue vector mosquito Aedes albopictus respond to global warming?
    Jia P; Chen X; Chen J; Lu L; Liu Q; Tan X
    Parasit Vectors; 2017 Mar; 10(1):140. PubMed ID: 28284225
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Landscape structure affects distribution of potential disease vectors (Diptera: Culicidae).
    Zittra C; Vitecek S; Obwaller AG; Rossiter H; Eigner B; Zechmeister T; Waringer J; Fuehrer HP
    Parasit Vectors; 2017 Apr; 10(1):205. PubMed ID: 28441957
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanistic model for predicting the seasonal abundance of Culicoides biting midges and the impacts of insecticide control.
    White SM; Sanders CJ; Shortall CR; Purse BV
    Parasit Vectors; 2017 Mar; 10(1):162. PubMed ID: 28347327
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modelling diapause in mosquito population growth.
    Lou Y; Liu K; He D; Gao D; Ruan S
    J Math Biol; 2019 Jun; 78(7):2259-2288. PubMed ID: 30847501
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modelling seasonal dynamics, population stability, and pest control in Aedes japonicus japonicus (Diptera: Culicidae).
    Wieser A; Reuss F; Niamir A; Müller R; O'Hara RB; Pfenninger M
    Parasit Vectors; 2019 Mar; 12(1):142. PubMed ID: 30909930
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Abundance of West Nile virus mosquito vectors in relation to climate and landscape variables.
    Deichmeister JM; Telang A
    J Vector Ecol; 2011 Jun; 36(1):75-85. PubMed ID: 21635644
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Overwintering in the Bamboo Mosquito Tripteroides bambusa (Diptera: Culicidae) During a Warm, But Unpredictably Changing, Winter.
    Chaves LF; Jian JY; Moji K
    Environ Entomol; 2018 Feb; 47(1):148-158. PubMed ID: 29293910
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Do vegetated rooftops attract more mosquitoes? Monitoring disease vector abundance on urban green roofs.
    Wong GKL; Jim CY
    Sci Total Environ; 2016 Dec; 573():222-232. PubMed ID: 27565531
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A host stage-structured model of enzootic West Nile virus transmission to explore the effect of avian stage-dependent exposure to vectors.
    Robertson SL; Caillouët KA
    J Theor Biol; 2016 Jun; 399():33-42. PubMed ID: 27036097
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of temperature on Anopheles mosquito population dynamics and the potential for malaria transmission.
    Beck-Johnson LM; Nelson WA; Paaijmans KP; Read AF; Thomas MB; Bjørnstad ON
    PLoS One; 2013; 8(11):e79276. PubMed ID: 24244467
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effects of climatic factors on the distribution and abundance of Japanese encephalitis vectors in Kurnool district of Andhra Pradesh, India.
    Murty US; Rao MS; Arunachalam N
    J Vector Borne Dis; 2010 Mar; 47(1):26-32. PubMed ID: 20231770
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of rainfall on Culex mosquito population dynamics.
    Valdez LD; Sibona GJ; Diaz LA; Contigiani MS; Condat CA
    J Theor Biol; 2017 May; 421():28-38. PubMed ID: 28351704
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A stage structured mosquito model incorporating effects of precipitation and daily temperature fluctuations.
    Wang X; Tang S; Cheke RA
    J Theor Biol; 2016 Dec; 411():27-36. PubMed ID: 27693525
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mathematical modelling of mosquito dispersal in a heterogeneous environment.
    Lutambi AM; Penny MA; Smith T; Chitnis N
    Math Biosci; 2013 Feb; 241(2):198-216. PubMed ID: 23246807
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.