These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 27084590)

  • 1. A novel beam optics concept in a particle therapy gantry utilizing the advantages of superconducting magnets.
    Gerbershagen A; Meer D; Schippers JM; Seidel M
    Z Med Phys; 2016 Sep; 26(3):224-37. PubMed ID: 27084590
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Large energy acceptance gantry for proton therapy utilizing superconducting technology.
    Nesteruk KP; Calzolaio C; Meer D; Rizzoglio V; Seidel M; Schippers JM
    Phys Med Biol; 2019 Aug; 64(17):175007. PubMed ID: 31272087
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design and optimization of beam optics for a superconducting gantry applied to proton therapy.
    Zhao R; Qin B; Liu X; Chen H; Chen Q
    Phys Med; 2020 May; 73():158-163. PubMed ID: 32361573
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A light-weight compact proton gantry design with a novel dose delivery system for broad-energetic laser-accelerated beams.
    Masood U; Cowan TE; Enghardt W; Hofmann KM; Karsch L; Kroll F; Schramm U; Wilkens JJ; Pawelke J
    Phys Med Biol; 2017 Jul; 62(13):5531-5555. PubMed ID: 28609301
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fan-beam intensity modulated proton therapy.
    Hill P; Westerly D; Mackie T
    Med Phys; 2013 Nov; 40(11):111704. PubMed ID: 24320412
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Accelerators, Gantries, Magnets and Imaging Systems for Particle Beam Therapy: Recent Status and Prospects for Improvement.
    Collings EW; Lu L; Gupta N; Sumption MD
    Front Oncol; 2021; 11():737837. PubMed ID: 35242695
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Feasibility study of multiple-energy Bragg peak proton FLASH on a superconducting gantry with large momentum acceptance.
    Zeng Y; Li H; Wang W; Liu X; Qin B; Dai S; Pang B; Liu M; Quan H; Yang K; Chang Y; Yang Z
    Med Phys; 2024 Mar; 51(3):2164-2174. PubMed ID: 38169535
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A new emittance selection system to maximize beam transmission for low-energy beams in cyclotron-based proton therapy facilities with gantry.
    Maradia V; Meer D; Weber DC; Lomax AJ; Schippers JM; Psoroulas S
    Med Phys; 2021 Dec; 48(12):7613-7622. PubMed ID: 34655083
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Particle tracking and beam optics analysis on a toroidal gantry for proton therapy.
    Felcini E; Bottura L; Gerbershagen A; van Nugteren J; Dutoit B
    Phys Med Biol; 2021 May; 66(10):. PubMed ID: 33849002
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A predictive algorithm for spot position corrections after fast energy switching in proton pencil beam scanning.
    Psoroulas S; Bula C; Actis O; Weber DC; Meer D
    Med Phys; 2018 Nov; 45(11):4806-4815. PubMed ID: 30273965
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Increase of the transmission and emittance acceptance through a cyclotron-based proton therapy gantry.
    Maradia V; Giovannelli AC; Meer D; Weber DC; Lomax AJ; Schippers JM; Psoroulas S
    Med Phys; 2022 Apr; 49(4):2183-2192. PubMed ID: 35099067
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Particle selection and beam collimation system for laser-accelerated proton beam therapy.
    Luo W; Fourkal E; Li J; Ma CM
    Med Phys; 2005 Mar; 32(3):794-806. PubMed ID: 15839352
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mixed-size spot scanning with a compact large momentum acceptance superconducting (LMA-SC) gantry beamline for proton therapy.
    Wang W; Liu X; Liao Y; Zeng Y; Chen Y; Yu B; Yang Z; Gao H; Qin B
    Phys Med Biol; 2024 May; 69(11):. PubMed ID: 38688290
    [No Abstract]   [Full Text] [Related]  

  • 14. The M. D. Anderson proton therapy system.
    Smith A; Gillin M; Bues M; Zhu XR; Suzuki K; Mohan R; Woo S; Lee A; Komaki R; Cox J; Hiramoto K; Akiyama H; Ishida T; Sasaki T; Matsuda K
    Med Phys; 2009 Sep; 36(9):4068-83. PubMed ID: 19810479
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A static beam delivery device for fast scanning proton arc-therapy.
    Nesteruk KP; Bolsi A; Lomax AJ; Meer D; van de Water S; Schippers JM
    Phys Med Biol; 2021 Feb; 66(5):055018. PubMed ID: 33498040
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessment of secondary radiation and radiation protection in laser-driven proton therapy.
    Faby S; Wilkens JJ
    Z Med Phys; 2015 Jun; 25(2):112-22. PubMed ID: 25267383
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reassessment of the Necessity of the Proton Gantry: Analysis of Beam Orientations From 4332 Treatments at the Massachusetts General Hospital Proton Center Over the Past 10 Years.
    Yan S; Lu HM; Flanz J; Adams J; Trofimov A; Bortfeld T
    Int J Radiat Oncol Biol Phys; 2016 May; 95(1):224-233. PubMed ID: 26611874
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design of a light and fast energy degrader for a compact superconducting gantry with large momentum acceptance.
    Liu X; Wang W; Liang Z; Zhao R; Liu K; Qin B
    Phys Med; 2020 May; 73():43-47. PubMed ID: 32311653
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An empirical model for calculation of the collimator contamination dose in therapeutic proton beams.
    Vidal M; De Marzi L; Szymanowski H; Guinement L; Nauraye C; Hierso E; Freud N; Ferrand R; François P; Sarrut D
    Phys Med Biol; 2016 Feb; 61(4):1532-45. PubMed ID: 26816191
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Accurate Monte Carlo simulations for nozzle design, commissioning and quality assurance for a proton radiation therapy facility.
    Paganetti H; Jiang H; Lee SY; Kooy HM
    Med Phys; 2004 Jul; 31(7):2107-18. PubMed ID: 15305464
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.