BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 27084590)

  • 1. A novel beam optics concept in a particle therapy gantry utilizing the advantages of superconducting magnets.
    Gerbershagen A; Meer D; Schippers JM; Seidel M
    Z Med Phys; 2016 Sep; 26(3):224-37. PubMed ID: 27084590
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Large energy acceptance gantry for proton therapy utilizing superconducting technology.
    Nesteruk KP; Calzolaio C; Meer D; Rizzoglio V; Seidel M; Schippers JM
    Phys Med Biol; 2019 Aug; 64(17):175007. PubMed ID: 31272087
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design and optimization of beam optics for a superconducting gantry applied to proton therapy.
    Zhao R; Qin B; Liu X; Chen H; Chen Q
    Phys Med; 2020 May; 73():158-163. PubMed ID: 32361573
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A light-weight compact proton gantry design with a novel dose delivery system for broad-energetic laser-accelerated beams.
    Masood U; Cowan TE; Enghardt W; Hofmann KM; Karsch L; Kroll F; Schramm U; Wilkens JJ; Pawelke J
    Phys Med Biol; 2017 Jul; 62(13):5531-5555. PubMed ID: 28609301
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fan-beam intensity modulated proton therapy.
    Hill P; Westerly D; Mackie T
    Med Phys; 2013 Nov; 40(11):111704. PubMed ID: 24320412
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Accelerators, Gantries, Magnets and Imaging Systems for Particle Beam Therapy: Recent Status and Prospects for Improvement.
    Collings EW; Lu L; Gupta N; Sumption MD
    Front Oncol; 2021; 11():737837. PubMed ID: 35242695
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Feasibility study of multiple-energy Bragg peak proton FLASH on a superconducting gantry with large momentum acceptance.
    Zeng Y; Li H; Wang W; Liu X; Qin B; Dai S; Pang B; Liu M; Quan H; Yang K; Chang Y; Yang Z
    Med Phys; 2024 Mar; 51(3):2164-2174. PubMed ID: 38169535
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A new emittance selection system to maximize beam transmission for low-energy beams in cyclotron-based proton therapy facilities with gantry.
    Maradia V; Meer D; Weber DC; Lomax AJ; Schippers JM; Psoroulas S
    Med Phys; 2021 Dec; 48(12):7613-7622. PubMed ID: 34655083
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Particle tracking and beam optics analysis on a toroidal gantry for proton therapy.
    Felcini E; Bottura L; Gerbershagen A; van Nugteren J; Dutoit B
    Phys Med Biol; 2021 May; 66(10):. PubMed ID: 33849002
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A predictive algorithm for spot position corrections after fast energy switching in proton pencil beam scanning.
    Psoroulas S; Bula C; Actis O; Weber DC; Meer D
    Med Phys; 2018 Nov; 45(11):4806-4815. PubMed ID: 30273965
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Increase of the transmission and emittance acceptance through a cyclotron-based proton therapy gantry.
    Maradia V; Giovannelli AC; Meer D; Weber DC; Lomax AJ; Schippers JM; Psoroulas S
    Med Phys; 2022 Apr; 49(4):2183-2192. PubMed ID: 35099067
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Particle selection and beam collimation system for laser-accelerated proton beam therapy.
    Luo W; Fourkal E; Li J; Ma CM
    Med Phys; 2005 Mar; 32(3):794-806. PubMed ID: 15839352
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mixed-size spot scanning with a compact large momentum acceptance superconducting (LMA-SC) gantry beamline for proton therapy.
    Wang W; Liu X; Liao Y; Zeng Y; Chen Y; Yu B; Yang Z; Gao H; Qin B
    Phys Med Biol; 2024 May; 69(11):. PubMed ID: 38688290
    [No Abstract]   [Full Text] [Related]  

  • 14. The M. D. Anderson proton therapy system.
    Smith A; Gillin M; Bues M; Zhu XR; Suzuki K; Mohan R; Woo S; Lee A; Komaki R; Cox J; Hiramoto K; Akiyama H; Ishida T; Sasaki T; Matsuda K
    Med Phys; 2009 Sep; 36(9):4068-83. PubMed ID: 19810479
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A static beam delivery device for fast scanning proton arc-therapy.
    Nesteruk KP; Bolsi A; Lomax AJ; Meer D; van de Water S; Schippers JM
    Phys Med Biol; 2021 Feb; 66(5):055018. PubMed ID: 33498040
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessment of secondary radiation and radiation protection in laser-driven proton therapy.
    Faby S; Wilkens JJ
    Z Med Phys; 2015 Jun; 25(2):112-22. PubMed ID: 25267383
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reassessment of the Necessity of the Proton Gantry: Analysis of Beam Orientations From 4332 Treatments at the Massachusetts General Hospital Proton Center Over the Past 10 Years.
    Yan S; Lu HM; Flanz J; Adams J; Trofimov A; Bortfeld T
    Int J Radiat Oncol Biol Phys; 2016 May; 95(1):224-233. PubMed ID: 26611874
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design of a light and fast energy degrader for a compact superconducting gantry with large momentum acceptance.
    Liu X; Wang W; Liang Z; Zhao R; Liu K; Qin B
    Phys Med; 2020 May; 73():43-47. PubMed ID: 32311653
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An empirical model for calculation of the collimator contamination dose in therapeutic proton beams.
    Vidal M; De Marzi L; Szymanowski H; Guinement L; Nauraye C; Hierso E; Freud N; Ferrand R; François P; Sarrut D
    Phys Med Biol; 2016 Feb; 61(4):1532-45. PubMed ID: 26816191
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Accurate Monte Carlo simulations for nozzle design, commissioning and quality assurance for a proton radiation therapy facility.
    Paganetti H; Jiang H; Lee SY; Kooy HM
    Med Phys; 2004 Jul; 31(7):2107-18. PubMed ID: 15305464
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.