BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

309 related articles for article (PubMed ID: 27084685)

  • 21. STAGE-diging: A novel in-gel digestion processing for proteomics samples.
    Soffientini P; Bachi A
    J Proteomics; 2016 May; 140():48-54. PubMed ID: 27060224
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Gel Absorption-Based Sample Preparation Method for Shotgun Analysis of Membrane Proteome.
    Wang X; Liang S
    Methods Mol Biol; 2019; 1855():483-490. PubMed ID: 30426442
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A simple protocol to routinely assess the uniformity of proteomics analyses.
    Gallien S; Bourmaud A; Domon B
    J Proteome Res; 2014 May; 13(5):2688-95. PubMed ID: 24617767
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Ultrafast microwave-assisted in-tip digestion of proteins.
    Hahn HW; Rainer M; Ringer T; Huck CW; Bonn GK
    J Proteome Res; 2009 Sep; 8(9):4225-30. PubMed ID: 19639939
    [TBL] [Abstract][Full Text] [Related]  

  • 25. High precision quantification of human plasma proteins using the automated SISCAPA Immuno-MS workflow.
    Razavi M; Leigh Anderson N; Pope ME; Yip R; Pearson TW
    N Biotechnol; 2016 Sep; 33(5 Pt A):494-502. PubMed ID: 26772726
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Hit-Gel: Streamlining in-gel protein digestion for high-throughput proteomics experiments.
    Swart C; Martínez-Jaime S; Gorka M; Zander K; Graf A
    Sci Rep; 2018 Jun; 8(1):8582. PubMed ID: 29872109
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Why less is more when generating tryptic peptides in bottom-up proteomics.
    Hildonen S; Halvorsen TG; Reubsaet L
    Proteomics; 2014 Sep; 14(17-18):2031-41. PubMed ID: 25044798
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The OASIS® HLB μElution plate as a one-step platform for manual high-throughput in-gel digestion of proteins and peptide desalting.
    Franz T; Li X
    Proteomics; 2012 Aug; 12(15-16):2487-92. PubMed ID: 22903840
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Short GeLC-SWATH: a fast and reliable quantitative approach for proteomic screenings.
    Anjo SI; Santa C; Manadas B
    Proteomics; 2015 Feb; 15(4):757-62. PubMed ID: 25418953
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Decreasing the amount of trypsin in in-gel digestion leads to diminished chemical noise and improved protein identifications.
    Hu M; Liu Y; Yu K; Liu X
    J Proteomics; 2014 Sep; 109():16-25. PubMed ID: 24984109
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A clean, more efficient method for in-solution digestion of protein mixtures without detergent or urea.
    Kim SC; Chen Y; Mirza S; Xu Y; Lee J; Liu P; Zhao Y
    J Proteome Res; 2006 Dec; 5(12):3446-52. PubMed ID: 17137347
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Efficient in-gel digestion procedure using 5-cyclohexyl-1-pentyl-beta-D-maltoside as an additive for gel-based membrane proteomics.
    Katayama H; Tabata T; Ishihama Y; Sato T; Oda Y; Nagasu T
    Rapid Commun Mass Spectrom; 2004; 18(20):2388-94. PubMed ID: 15386632
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Systematic and quantitative comparison of digest efficiency and specificity reveals the impact of trypsin quality on MS-based proteomics.
    Burkhart JM; Schumbrutzki C; Wortelkamp S; Sickmann A; Zahedi RP
    J Proteomics; 2012 Feb; 75(4):1454-62. PubMed ID: 22166745
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Automated Sample Preparation Workflow for Tandem Mass Tag-Based Proteomics.
    Mun DG; Joshi NS; Budhraja R; Sachdeva GS; Kang T; Bhat FA; Ding H; Madden BJ; Zhong J; Pandey A
    J Am Soc Mass Spectrom; 2023 Oct; 34(10):2087-2092. PubMed ID: 37657774
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Automated tryptic digestion procedure for HPLC/MS/MS peptide mapping of immunoglobulin gamma antibodies in pharmaceutics.
    Chelius D; Xiao G; Nichols AC; Vizel A; He B; Dillon TM; Rehder DS; Pipes GD; Kraft E; Oroska A; Treuheit MJ; Bondarenko PV
    J Pharm Biomed Anal; 2008 Jun; 47(2):285-94. PubMed ID: 18313251
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Miniaturized and automated high-throughput verification of proteins in the ISET platform with MALDI MS.
    Adler B; Boström T; Ekström S; Hober S; Laurell T
    Anal Chem; 2012 Oct; 84(20):8663-9. PubMed ID: 22971087
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Sample Preparation for Mass Spectrometry-Based Proteomics; from Proteomes to Peptides.
    Rogers JC; Bomgarden RD
    Adv Exp Med Biol; 2016; 919():43-62. PubMed ID: 27975212
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Protein Digestion for DIGE Analysis.
    Murphy S; Ohlendieck K
    Methods Mol Biol; 2018; 1664():223-232. PubMed ID: 29019136
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Pressurized pepsin digestion in proteomics: an automatable alternative to trypsin for integrated top-down bottom-up proteomics.
    López-Ferrer D; Petritis K; Robinson EW; Hixson KK; Tian Z; Lee JH; Lee SW; Tolić N; Weitz KK; Belov ME; Smith RD; Pasa-Tolić L
    Mol Cell Proteomics; 2011 Feb; 10(2):M110.001479. PubMed ID: 20627868
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Assessing Automated Sample Preparation Technologies for High-Throughput Proteomics of Frozen Well Characterized Tissues from Swedish Biobanks.
    Kuras M; Betancourt LH; Rezeli M; Rodriguez J; Szasz M; Zhou Q; Miliotis T; Andersson R; Marko-Varga G
    J Proteome Res; 2019 Jan; 18(1):548-556. PubMed ID: 30462917
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.