These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

259 related articles for article (PubMed ID: 27084897)

  • 1. All-in-one construct for genome engineering using Cre-lox technology.
    Mariscal AM; González-González L; Querol E; Piñol J
    DNA Res; 2016 Jun; 23(3):263-70. PubMed ID: 27084897
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A single vector containing modified cre recombinase and LOX recombination sequences for inducible tissue-specific amplification of gene expression.
    Kaczmarczyk SJ; Green JE
    Nucleic Acids Res; 2001 Jun; 29(12):E56-6. PubMed ID: 11410679
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of seven promoters to achieve germline directed Cre-lox recombination in Arabidopsis thaliana.
    Van Ex F; Verweire D; Claeys M; Depicker A; Angenon G
    Plant Cell Rep; 2009 Oct; 28(10):1509-20. PubMed ID: 19652974
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Temporal control of Cre recombinase-mediated in vitro DNA recombination by Tet-on gene expression system.
    Guo ZM; Xu K; Yue Y; Huang B; Deng XY; Zhong NQ; Hong X; Chen XG; Xiao D
    Acta Biochim Biophys Sin (Shanghai); 2005 Feb; 37(2):133-8. PubMed ID: 15685371
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cloning-free genome engineering in Sinorhizobium meliloti advances applications of Cre/loxP site-specific recombination.
    Döhlemann J; Brennecke M; Becker A
    J Biotechnol; 2016 Sep; 233():160-70. PubMed ID: 27393468
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Combined sacB-based negative selection and cre-lox antibiotic marker recycling for efficient gene deletion in pseudomonas aeruginosa.
    Quénée L; Lamotte D; Polack B
    Biotechniques; 2005 Jan; 38(1):63-7. PubMed ID: 15679087
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Site-directed integration system using a combination of mutant lox sites for Corynebacterium glutamicum.
    Suzuki N; Inui M; Yukawa H
    Appl Microbiol Biotechnol; 2007 Dec; 77(4):871-8. PubMed ID: 17938910
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Manipulation of T cell function and conditional gene targeting in T cells.
    Sledzińska A; Fairbairn L; Buch T
    Methods Mol Biol; 2014; 1193():153-69. PubMed ID: 25151005
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Using the Cre/lox system for targeted integration into the human genome: loxFAS-loxP pairing and delayed introduction of Cre DNA improve gene swapping efficiency.
    Lanza AM; Dyess TJ; Alper HS
    Biotechnol J; 2012 Jul; 7(7):898-908. PubMed ID: 22539467
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A photoactivatable Cre-loxP recombination system for optogenetic genome engineering.
    Kawano F; Okazaki R; Yazawa M; Sato M
    Nat Chem Biol; 2016 Dec; 12(12):1059-1064. PubMed ID: 27723747
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gene Stacking in Plants Through the Application of Site-Specific Recombination and Nuclease Activity.
    Srivastava V
    Methods Mol Biol; 2019; 1864():267-277. PubMed ID: 30415342
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Legacy of Nat Sternberg: The Genesis of Cre-lox Technology.
    Yarmolinsky M; Hoess R
    Annu Rev Virol; 2015 Nov; 2(1):25-40. PubMed ID: 26958905
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cre/lox system and PCR-based genome engineering in Bacillus subtilis.
    Yan X; Yu HJ; Hong Q; Li SP
    Appl Environ Microbiol; 2008 Sep; 74(17):5556-62. PubMed ID: 18641148
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photoactivatable Cre recombinase 3.0 for in vivo mouse applications.
    Morikawa K; Furuhashi K; de Sena-Tomas C; Garcia-Garcia AL; Bekdash R; Klein AD; Gallerani N; Yamamoto HE; Park SE; Collins GS; Kawano F; Sato M; Lin CS; Targoff KL; Au E; Salling MC; Yazawa M
    Nat Commun; 2020 May; 11(1):2141. PubMed ID: 32358538
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gene stacking in plant cell using recombinases for gene integration and nucleases for marker gene deletion.
    Nandy S; Zhao S; Pathak BP; Manoharan M; Srivastava V
    BMC Biotechnol; 2015 Oct; 15():93. PubMed ID: 26452472
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inducible gene targeting in mice using the Cre/lox system.
    Sauer B
    Methods; 1998 Apr; 14(4):381-92. PubMed ID: 9608509
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Complete chemical synthesis, assembly, and cloning of a Mycoplasma genitalium genome.
    Gibson DG; Benders GA; Andrews-Pfannkoch C; Denisova EA; Baden-Tillson H; Zaveri J; Stockwell TB; Brownley A; Thomas DW; Algire MA; Merryman C; Young L; Noskov VN; Glass JI; Venter JC; Hutchison CA; Smith HO
    Science; 2008 Feb; 319(5867):1215-20. PubMed ID: 18218864
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A high-efficiency Cre/loxP-based system for construction of adenoviral vectors.
    Ng P; Parks RJ; Cummings DT; Evelegh CM; Sankar U; Graham FL
    Hum Gene Ther; 1999 Nov; 10(16):2667-72. PubMed ID: 10566894
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simultaneous non-contiguous deletions using large synthetic DNA and site-specific recombinases.
    Krishnakumar R; Grose C; Haft DH; Zaveri J; Alperovich N; Gibson DG; Merryman C; Glass JI
    Nucleic Acids Res; 2014 Aug; 42(14):e111. PubMed ID: 24914053
    [TBL] [Abstract][Full Text] [Related]  

  • 20. New variants of inducible Cre recombinase: a novel mutant of Cre-PR fusion protein exhibits enhanced sensitivity and an expanded range of inducibility.
    Wunderlich FT; Wildner H; Rajewsky K; Edenhofer F
    Nucleic Acids Res; 2001 May; 29(10):E47. PubMed ID: 11353092
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.