These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 27085019)

  • 1. An aptamer based lateral flow strip for on-site rapid detection of ochratoxin A in Astragalus membranaceus.
    Zhou W; Kong W; Dou X; Zhao M; Ouyang Z; Yang M
    J Chromatogr B Analyt Technol Biomed Life Sci; 2016 Jun; 1022():102-108. PubMed ID: 27085019
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Highly Sensitive Colorimetric Detection of Ochratoxin A by a Label-Free Aptamer and Gold Nanoparticles.
    Luan Y; Chen J; Li C; Xie G; Fu H; Ma Z; Lu A
    Toxins (Basel); 2015 Dec; 7(12):5377-85. PubMed ID: 26690477
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A test strip for ochratoxin A based on the use of aptamer-modified fluorescence upconversion nanoparticles.
    Wu S; Liu L; Duan N; Wang W; Yu Q; Wang Z
    Mikrochim Acta; 2018 Oct; 185(11):497. PubMed ID: 30291459
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Lateral Flow Strip Based Aptasensor for Detection of Ochratoxin A in Corn Samples.
    Zhang G; Zhu C; Huang Y; Yan J; Chen A
    Molecules; 2018 Jan; 23(2):. PubMed ID: 29385022
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An aptamer-based chromatographic strip assay for sensitive toxin semi-quantitative detection.
    Wang L; Ma W; Chen W; Liu L; Ma W; Zhu Y; Xu L; Kuang H; Xu C
    Biosens Bioelectron; 2011 Feb; 26(6):3059-62. PubMed ID: 21167704
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Aptamer-based Colorimetric Biosensing of Ochratoxin A in Fortified White Grape Wine Sample Using Unmodified Gold Nanoparticles.
    Yin X; Wang S; Liu X; He C; Tang Y; Li Q; Liu J; Su H; Tan T; Dong Y
    Anal Sci; 2017; 33(6):659-664. PubMed ID: 28603182
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Titanium Dioxide Nanoparticles (TiO₂) Quenching Based Aptasensing Platform: Application to Ochratoxin A Detection.
    Sharma A; Hayat A; Mishra RK; Catanante G; Bhand S; Marty JL
    Toxins (Basel); 2015 Sep; 7(9):3771-84. PubMed ID: 26402704
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A double-recognized aptamer-molecularly imprinted monolithic column for high-specificity recognition of ochratoxin A.
    Lyu H; Sun H; Zhu Y; Wang J; Xie Z; Li J
    Anal Chim Acta; 2020 Mar; 1103():97-105. PubMed ID: 32081193
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrochemiluminescence biosensor for ultrasensitive determination of ochratoxin A in corn samples based on aptamer and hyperbranched rolling circle amplification.
    Yang L; Zhang Y; Li R; Lin C; Guo L; Qiu B; Lin Z; Chen G
    Biosens Bioelectron; 2015 Aug; 70():268-74. PubMed ID: 25835519
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fluorescent strip sensor for rapid determination of toxins.
    Wang L; Chen W; Ma W; Liu L; Ma W; Zhao Y; Zhu Y; Xu L; Kuang H; Xu C
    Chem Commun (Camb); 2011 Feb; 47(5):1574-6. PubMed ID: 21116526
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Aptamer-Based Lateral Flow Test Strip for Rapid Detection of Zearalenone in Corn Samples.
    Wu S; Liu L; Duan N; Li Q; Zhou Y; Wang Z
    J Agric Food Chem; 2018 Feb; 66(8):1949-1954. PubMed ID: 29425043
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of Lateral Flow Immunochromatographic Strips for Micropollutant Screening Using Colorants of Aptamer-Functionalized Nanogold Particles, Part II: Experimental Verification with Aflatoxin B1 and Chloramphenicol.
    Zhang S; Zhao S; Wang S; Liu J; Dong Y
    J AOAC Int; 2018 Sep; 101(5):1408-1414. PubMed ID: 29743135
    [TBL] [Abstract][Full Text] [Related]  

  • 13. PVP-coated gold nanoparticles for the selective determination of ochratoxin A via quenching fluorescence of the free aptamer.
    Lv L; Jin Y; Kang X; Zhao Y; Cui C; Guo Z
    Food Chem; 2018 May; 249():45-50. PubMed ID: 29407930
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Amplified fluorescent aptasensor through catalytic recycling for highly sensitive detection of ochratoxin A.
    Wei Y; Zhang J; Wang X; Duan Y
    Biosens Bioelectron; 2015 Mar; 65():16-22. PubMed ID: 25461133
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design and synthesis of target-responsive aptamer-cross-linked hydrogel for visual quantitative detection of ochratoxin A.
    Liu R; Huang Y; Ma Y; Jia S; Gao M; Li J; Zhang H; Xu D; Wu M; Chen Y; Zhu Z; Yang C
    ACS Appl Mater Interfaces; 2015 Apr; 7(12):6982-90. PubMed ID: 25771715
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An aptamer based surface plasmon resonance biosensor for the detection of ochratoxin A in wine and peanut oil.
    Zhu Z; Feng M; Zuo L; Zhu Z; Wang F; Chen L; Li J; Shan G; Luo SZ
    Biosens Bioelectron; 2015 Mar; 65():320-6. PubMed ID: 25461176
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Aptamer-based colorimetric biosensing of Ochratoxin A using unmodified gold nanoparticles indicator.
    Yang C; Wang Y; Marty JL; Yang X
    Biosens Bioelectron; 2011 Jan; 26(5):2724-7. PubMed ID: 20970980
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ultrasensitive one-step rapid detection of ochratoxin A by the folding-based electrochemical aptasensor.
    Wu J; Chu H; Mei Z; Deng Y; Xue F; Zheng L; Chen W
    Anal Chim Acta; 2012 Nov; 753():27-31. PubMed ID: 23107133
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Screening interaction between ochratoxin A and aptamers by fluorescence anisotropy approach.
    Geng X; Zhang D; Wang H; Zhao Q
    Anal Bioanal Chem; 2013 Mar; 405(8):2443-9. PubMed ID: 23361229
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of an aptasensor based on a fluorescent particles-modified aptamer for ochratoxin A detection.
    Hayat A; Mishra RK; Catanante G; Marty JL
    Anal Bioanal Chem; 2015 Oct; 407(25):7815-22. PubMed ID: 26277188
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.