These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 27085101)

  • 1. Vanillic and syringic acids from biomass burning: Behaviour during Fenton-like oxidation in atmospheric aqueous phase and in the absence of light.
    Santos GT; Santos PS; Duarte AC
    J Hazard Mater; 2016 Aug; 313():201-8. PubMed ID: 27085101
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fenton-like oxidation of small aromatic acids from biomass burning in water and in the absence of light: implications for atmospheric chemistry.
    Santos PSM; Duarte AC
    Chemosphere; 2015 Jan; 119():786-793. PubMed ID: 25201586
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fenton-like oxidation of small aromatic acids from biomass burning in atmospheric water and in the absence of light: Identification of intermediates and reaction pathways.
    Santos PSM; Domingues MRM; Duarte AC
    Chemosphere; 2016 Jul; 154():599-603. PubMed ID: 27088537
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Discrepant oxidation behavior of ferric ion and hydroxyl radical on syringic acid and vanillic acid in atmospheric Fenton-like system.
    Zhao J; Wang Y; Liu H; Wu Y; Dong W
    Chemosphere; 2022 Jan; 287(Pt 1):132022. PubMed ID: 34464849
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oxidation of benzoic acid from biomass burning in atmospheric waters.
    Santos PSM; Cardoso HB; Rocha-Santos TAP; Duarte AC
    Environ Pollut; 2019 Jan; 244():693-704. PubMed ID: 30384075
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biodegradation of Lignin Monomers Vanillic, p-Coumaric, and Syringic Acid by the Bacterial Strain, Sphingobacterium sp. HY-H.
    Wang J; Liang J; Gao S
    Curr Microbiol; 2018 Sep; 75(9):1156-1164. PubMed ID: 29750329
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Aqueous-phase oxidation of syringic acid emitted from biomass burning: Formation of light-absorbing compounds.
    Li F; Tsona NT; Li J; Du L
    Sci Total Environ; 2021 Apr; 765():144239. PubMed ID: 33412376
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biomass burning as the main source of organic aerosol particulate matter in Malaysia during haze episodes.
    Radzi bin Abas M; Oros DR; Simoneit BR
    Chemosphere; 2004 May; 55(8):1089-95. PubMed ID: 15050806
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinetics and mechanism of syringic acid degradation initiated by hydroxyl radical and sulphate radical in the aqueous phase.
    Tong X; Wang S; Wang L
    Chemosphere; 2020 Oct; 256():126997. PubMed ID: 32473466
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Vanillic acid and syringic acid: Exceptionally robust aromatic moieties for inhibiting in vitro self-assembly of type I collagen.
    Rasheeda K; Bharathy H; Nishad Fathima N
    Int J Biol Macromol; 2018 Jul; 113():952-960. PubMed ID: 29522822
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Polyalkylenehydroxybenzoates (PAHBs): biorenewable aromatic/aliphatic polyesters from lignin.
    Mialon L; Vanderhenst R; Pemba AG; Miller SA
    Macromol Rapid Commun; 2011 Sep; 32(17):1386-92. PubMed ID: 21800392
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spectrophotometric study of the copigmentation of malvidin 3-O-glucoside with p-coumaric, vanillic and syringic acids.
    Malaj N; De Simone BC; Quartarolo AD; Russo N
    Food Chem; 2013 Dec; 141(4):3614-20. PubMed ID: 23993528
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of tertiary treatment by fungi, enzymatic and photo-Fenton oxidation on the removal of phenols from a kraft pulp mill effluent: a comparative study.
    Justino C; Marques AG; Rodrigues D; Silva L; Duarte AC; Rocha-Santos T; Freitas AC
    Biodegradation; 2011 Apr; 22(2):267-74. PubMed ID: 20683764
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Protection capacity against low-density lipoprotein oxidation and antioxidant potential of some organic and non-organic wines.
    Kalkan Yildirim H; Delen Akçay Y; Güvenç U; Yildirim Sözmen E
    Int J Food Sci Nutr; 2004 Aug; 55(5):351-62. PubMed ID: 15545043
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Five primary sources of organic aerosols in the urban atmosphere of Belgrade (Serbia).
    Zangrando R; Barbaro E; Kirchgeorg T; Vecchiato M; Scalabrin E; Radaelli M; Đorđević D; Barbante C; Gambaro A
    Sci Total Environ; 2016 Nov; 571():1441-53. PubMed ID: 27450960
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Studies on the chemical constituents from herba of Corallodiscus flabellata].
    Zheng XK; Li J; Feng WS; Bi YF; Ji CR
    Zhongguo Zhong Yao Za Zhi; 2002 Dec; 27(12):926-8. PubMed ID: 12776534
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure influence on biophenols solubility in model biomembranes detected by differential scanning calorimetry.
    Sarpietro MG; Caruso S; Librando V; Castelli F
    Mol Nutr Food Res; 2005 Oct; 49(10):944-9. PubMed ID: 16189796
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Kinetic Approach to Evaluate the Structure-Based Performance of Antioxidants During Lipid Oxidation.
    Farhoosh R
    J Food Sci; 2018 Jan; 83(1):101-107. PubMed ID: 29210460
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Aromatic Photo-oxidation, A New Source of Atmospheric Acidity.
    Wang S; Newland MJ; Deng W; Rickard AR; Hamilton JF; Muñoz A; Ródenas M; Vázquez MM; Wang L; Wang X
    Environ Sci Technol; 2020 Jul; 54(13):7798-7806. PubMed ID: 32479720
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Study on Chemical Constituents of Stalk from Pottsia laxifora].
    Wang SJ; Wu C; Zhao G
    Zhong Yao Cai; 2016 Feb; 39(2):326-8. PubMed ID: 30080368
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.