These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
182 related articles for article (PubMed ID: 27085477)
1. Gradation of proteins and cells attached to the surface of bio-inert zwitterionic polymer brush. Li L; Nakaji-Hirabayashi T; Kitano H; Ohno K; Kishioka T; Usui Y Colloids Surf B Biointerfaces; 2016 Aug; 144():180-187. PubMed ID: 27085477 [TBL] [Abstract][Full Text] [Related]
2. A novel approach for UV-patterning with binary polymer brushes. Li L; Nakaji-Hirabayashi T; Kitano H; Ohno K; Saruwatari Y; Matsuoka K Colloids Surf B Biointerfaces; 2018 Jan; 161():42-50. PubMed ID: 29040833 [TBL] [Abstract][Full Text] [Related]
3. Zwitterionic polymer brushes via dopamine-initiated ATRP from PET sheets for improving hemocompatible and antifouling properties. Jin X; Yuan J; Shen J Colloids Surf B Biointerfaces; 2016 Sep; 145():275-284. PubMed ID: 27208441 [TBL] [Abstract][Full Text] [Related]
4. Optimization of the composition of zwitterionic copolymers for the easy-construction of bio-inactive surfaces. Nishida M; Nakaji-Hirabayashi T; Kitano H; Matsuoka K; Saruwatari Y J Biomed Mater Res A; 2016 Aug; 104(8):2029-36. PubMed ID: 27062574 [TBL] [Abstract][Full Text] [Related]
5. Patterning of photocleavable zwitterionic polymer brush fabricated on silicon wafer. Kamada T; Yamazawa Y; Nakaji-Hirabayashi T; Kitano H; Usui Y; Hiroi Y; Kishioka T Colloids Surf B Biointerfaces; 2014 Nov; 123():878-86. PubMed ID: 25466462 [TBL] [Abstract][Full Text] [Related]
6. Control of nanobiointerfaces generated from well-defined biomimetic polymer brushes for protein and cell manipulations. Iwata R; Suk-In P; Hoven VP; Takahara A; Akiyoshi K; Iwasaki Y Biomacromolecules; 2004; 5(6):2308-14. PubMed ID: 15530046 [TBL] [Abstract][Full Text] [Related]
7. Bioactive zwitterionic polymer brushes grafted from silicon wafers via SI-ATRP for enhancement of antifouling properties and endothelial cell selectivity. Wei Y; Zhang J; Feng X; Liu D J Biomater Sci Polym Ed; 2017 Dec; 28(18):2101-2116. PubMed ID: 28891389 [TBL] [Abstract][Full Text] [Related]
8. Surface grafted sulfobetaine polymers via atom transfer radical polymerization as superlow fouling coatings. Zhang Z; Chen S; Chang Y; Jiang S J Phys Chem B; 2006 Jun; 110(22):10799-804. PubMed ID: 16771329 [TBL] [Abstract][Full Text] [Related]
9. Structure of water in the vicinity of a zwitterionic polymer brush as examined by sum frequency generation method. Kondo T; Nomura K; Murou M; Gemmei-Ide M; Kitano H; Noguchi H; Uosaki K; Ohno K; Saruwatari Y Colloids Surf B Biointerfaces; 2012 Dec; 100():126-32. PubMed ID: 22766288 [TBL] [Abstract][Full Text] [Related]
11. One-Reactant Photografting of ATRP Initiators for Surface-Initiated Polymerization. Styan KE; Easton CD; Weaver LG; Meagher L Macromol Rapid Commun; 2016 Jul; 37(13):1079-86. PubMed ID: 27145108 [TBL] [Abstract][Full Text] [Related]
12. Control of Cell Attachment and Spreading on Poly(acrylamide) Brushes with Varied Grafting Density. Lilge I; Schönherr H Langmuir; 2016 Jan; 32(3):838-47. PubMed ID: 26771447 [TBL] [Abstract][Full Text] [Related]
13. Facile surface modification of silicone rubber with zwitterionic polymers for improving blood compatibility. Liu P; Chen Q; Yuan B; Chen M; Wu S; Lin S; Shen J Mater Sci Eng C Mater Biol Appl; 2013 Oct; 33(7):3865-74. PubMed ID: 23910289 [TBL] [Abstract][Full Text] [Related]
14. Chemical surface modification of parylene C for enhanced protein immobilization and cell proliferation. Zhang C; Thompson ME; Markland FS; Swenson S Acta Biomater; 2011 Oct; 7(10):3746-56. PubMed ID: 21689793 [TBL] [Abstract][Full Text] [Related]
15. Photoreactive Polymers Bearing a Zwitterionic Phosphorylcholine Group for Surface Modification of Biomaterials. Lin X; Fukazawa K; Ishihara K ACS Appl Mater Interfaces; 2015 Aug; 7(31):17489-98. PubMed ID: 26202385 [TBL] [Abstract][Full Text] [Related]
16. Reduction of protein adsorption on well-characterized polymer brush layers with varying chemical structures. Inoue Y; Ishihara K Colloids Surf B Biointerfaces; 2010 Nov; 81(1):350-7. PubMed ID: 20705439 [TBL] [Abstract][Full Text] [Related]
17. Well-defined protein immobilization on photo-responsive phosphorylcholine polymer surfaces. Tanaka M; Kawai S; Iwasaki Y J Biomater Sci Polym Ed; 2017 Dec; 28(17):2021-2033. PubMed ID: 28803516 [TBL] [Abstract][Full Text] [Related]
18. Surface-initiated hyperbranched polyglycerol as an ultralow-fouling coating on glass, silicon, and porous silicon substrates. Moore E; Delalat B; Vasani R; McPhee G; Thissen H; Voelcker NH ACS Appl Mater Interfaces; 2014 Sep; 6(17):15243-52. PubMed ID: 25137525 [TBL] [Abstract][Full Text] [Related]
19. Thermo-responsive polymer brushes as intelligent biointerfaces: preparation via ATRP and characterization. Nagase K; Watanabe M; Kikuchi A; Yamato M; Okano T Macromol Biosci; 2011 Mar; 11(3):400-9. PubMed ID: 21104702 [TBL] [Abstract][Full Text] [Related]
20. Image printing on the surface of anti-biofouling zwitterionic polymer brushes by ion beam irradiation. Kitano H; Suzuki H; Kondo T; Sasaki K; Iwanaga S; Nakamura M; Ohno K; Saruwatari Y Macromol Biosci; 2011 Apr; 11(4):557-64. PubMed ID: 21243650 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]