These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
182 related articles for article (PubMed ID: 27085477)
21. Substrate-Independent Micropatterning of Polymer Brushes Based on Photolytic Deactivation of Chemical Vapor Deposition Based Surface-Initiated Atom-Transfer Radical Polymerization Initiator Films. Kumar R; Welle A; Becker F; Kopyeva I; Lahann J ACS Appl Mater Interfaces; 2018 Sep; 10(38):31965-31976. PubMed ID: 30180547 [TBL] [Abstract][Full Text] [Related]
22. Titanium alloy modified with anti-biofouling zwitterionic polymer to facilitate formation of bio-mineral layer. Nishida M; Nakaji-Hirabayashi T; Kitano H; Saruwatari Y; Matsuoka K Colloids Surf B Biointerfaces; 2017 Apr; 152():302-310. PubMed ID: 28129602 [TBL] [Abstract][Full Text] [Related]
23. Generic top-functionalization of patterned antifouling zwitterionic polymers on indium tin oxide. Li Y; Giesbers M; Gerth M; Zuilhof H Langmuir; 2012 Aug; 28(34):12509-17. PubMed ID: 22888834 [TBL] [Abstract][Full Text] [Related]
24. A substrate-independent method for surface grafting polymer layers by atom transfer radical polymerization: reduction of protein adsorption. Coad BR; Lu Y; Meagher L Acta Biomater; 2012 Feb; 8(2):608-18. PubMed ID: 22023749 [TBL] [Abstract][Full Text] [Related]
25. Design of hemocompatible and antifouling PET sheets with synergistic zwitterionic surfaces. Wang Y; Shen J; Yuan J J Colloid Interface Sci; 2016 Oct; 480():205-217. PubMed ID: 27442148 [TBL] [Abstract][Full Text] [Related]
26. The role of independently variable grafting density and layer thickness of polymer nanolayers on peptide adsorption and cell adhesion. Singh N; Cui X; Boland T; Husson SM Biomaterials; 2007 Feb; 28(5):763-71. PubMed ID: 17049595 [TBL] [Abstract][Full Text] [Related]
27. Surface modification of PDMS by surface-initiated atom transfer radical polymerization of water-soluble dendronized PEG methacrylate. Zhang Z; Wang J; Tu Q; Nie N; Sha J; Liu W; Liu R; Zhang Y; Wang J Colloids Surf B Biointerfaces; 2011 Nov; 88(1):85-92. PubMed ID: 21752608 [TBL] [Abstract][Full Text] [Related]
28. Dual functional, polymeric self-assembled monolayers as a facile platform for construction of patterns of biomolecules. Park S; Lee KB; Choi IS; Langer R; Jon S Langmuir; 2007 Oct; 23(22):10902-5. PubMed ID: 17900199 [TBL] [Abstract][Full Text] [Related]
29. Superlow fouling sulfobetaine and carboxybetaine polymers on glass slides. Zhang Z; Chao T; Chen S; Jiang S Langmuir; 2006 Nov; 22(24):10072-7. PubMed ID: 17107002 [TBL] [Abstract][Full Text] [Related]
30. Functional polymer brushes via surface-initiated atom transfer radical graft polymerization for combating marine biofouling. Yang WJ; Neoh KG; Kang ET; Lee SS; Teo SL; Rittschof D Biofouling; 2012; 28(9):895-912. PubMed ID: 22963034 [TBL] [Abstract][Full Text] [Related]
31. Grafting of carboxybetaine brush onto cellulose membranes via surface-initiated ARGET-ATRP for improving blood compatibility. Wang M; Yuan J; Huang X; Cai X; Li L; Shen J Colloids Surf B Biointerfaces; 2013 Mar; 103():52-8. PubMed ID: 23201719 [TBL] [Abstract][Full Text] [Related]
32. Anti-biofouling properties of an amphoteric polymer brush constructed on a glass substrate. Kitano H; Kondo T; Kamada T; Iwanaga S; Nakamura M; Ohno K Colloids Surf B Biointerfaces; 2011 Nov; 88(1):455-62. PubMed ID: 21820283 [TBL] [Abstract][Full Text] [Related]
33. Patterned biofunctional poly(acrylic acid) brushes on silicon surfaces. Dong R; Krishnan S; Baird BA; Lindau M; Ober CK Biomacromolecules; 2007 Oct; 8(10):3082-92. PubMed ID: 17880179 [TBL] [Abstract][Full Text] [Related]
34. Amino acid-based zwitterionic polymers: antifouling properties and low cytotoxicity. Li W; Liu Q; Liu L J Biomater Sci Polym Ed; 2014; 25(14-15):1730-42. PubMed ID: 25136859 [TBL] [Abstract][Full Text] [Related]
35. Anti-biofouling properties of polymers with a carboxybetaine moiety. Tada S; Inaba C; Mizukami K; Fujishita S; Gemmei-Ide M; Kitano H; Mochizuki A; Tanaka M; Matsunaga T Macromol Biosci; 2009 Jan; 9(1):63-70. PubMed ID: 18814317 [TBL] [Abstract][Full Text] [Related]
36. Universal surface-initiated polymerization of antifouling zwitterionic brushes using a mussel-mimetic peptide initiator. Kuang J; Messersmith PB Langmuir; 2012 May; 28(18):7258-66. PubMed ID: 22506651 [TBL] [Abstract][Full Text] [Related]
37. Fabricating a cycloolefin polymer immunoassay platform with a dual-function polymer brush via a surface-initiated photoiniferter-mediated polymerization strategy. Ma J; Luan S; Song L; Jin J; Yuan S; Yan S; Yang H; Shi H; Yin J ACS Appl Mater Interfaces; 2014 Feb; 6(3):1971-8. PubMed ID: 24422426 [TBL] [Abstract][Full Text] [Related]
38. Controlled protein absorption and cell adhesion on polymer-brush-grafted poly(3,4-ethylenedioxythiophene) films. Zhao H; Zhu B; Luo SC; Lin HA; Nakao A; Yamashita Y; Yu HH ACS Appl Mater Interfaces; 2013 Jun; 5(11):4536-43. PubMed ID: 23573953 [TBL] [Abstract][Full Text] [Related]
39. Sulfobetaine-based polymer brushes in marine environment: is there an effect of the polymerizable group on the antifouling performance? Quintana R; JaĆczewski D; Vasantha VA; Jana S; Lee SS; Parra-Velandia FJ; Guo S; Parthiban A; Teo SL; Vancso GJ Colloids Surf B Biointerfaces; 2014 Aug; 120():118-24. PubMed ID: 24907581 [TBL] [Abstract][Full Text] [Related]
40. Temperature-responsive polymer-brush constructed on a glass substrate by atom transfer radical polymerization. Kitano H; Kondo T; Suzuki H; Ohno K J Colloid Interface Sci; 2010 May; 345(2):325-31. PubMed ID: 20206360 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]