BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

76 related articles for article (PubMed ID: 2708590)

  • 1. Tyrosine phosphorylation in the postnatal rat brain: a developmental, immunohistochemical study.
    Tillotson ML; Wood JG
    J Comp Neurol; 1989 Apr; 282(1):133-41. PubMed ID: 2708590
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fiber systems in the olfactory bulb and cortex: a study in adult and developing rats, using the timm method with the light and electron microscope.
    Friedman B; Price JL
    J Comp Neurol; 1984 Feb; 223(1):88-109. PubMed ID: 6200515
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Developmental regulation of protein tyrosine phosphorylation in rat brain.
    Aubry M; Maness PF
    J Neurosci Res; 1988; 21(2-4):473-9. PubMed ID: 2464082
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Developmental expression of neurofilament and glial filament proteins in rat cerebellum.
    Sawant LA; Hasgekar NN; Vyasarayani LS
    Int J Dev Biol; 1994 Sep; 38(3):429-37. PubMed ID: 7848826
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Developmental changes in the expression of chemokine receptor CCR1 in the rat cerebellum.
    Cowell RM; Silverstein FS
    J Comp Neurol; 2003 Feb; 457(1):7-23. PubMed ID: 12541321
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spatial, temporal, and cellular distribution of the activated extracellular signal regulated kinases 1 and 2 in the developing and mature rat cerebellum.
    Zsarnovszky A; Belcher SM
    Brain Res Dev Brain Res; 2004 Jun; 150(2):199-209. PubMed ID: 15158083
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Expression of neuronal and glial polypeptides during histogenesis of the human cerebellar cortex including observations on the dentate nucleus.
    Yachnis AT; Rorke LB; Lee VM; Trojanowski JQ
    J Comp Neurol; 1993 Aug; 334(3):356-69. PubMed ID: 7690783
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Immunoperoxidase localization of glial fibrillary acidic protein in radial glial cells and astrocytes of the developing rhesus monkey brain.
    Levitt P; Rakic P
    J Comp Neurol; 1980 Oct; 193(3):815-40. PubMed ID: 7002963
    [TBL] [Abstract][Full Text] [Related]  

  • 9. NADPH-diaphorase active and calbindin D-28k-immunoreactive neurons and fibers in the olfactory bulb of the hedgehog (Erinaceus europaeus).
    Alonso JR; Arévalo R; García-Ojeda E; Porteros A; Briñón JG; Aijón J
    J Comp Neurol; 1995 Jan; 351(2):307-27. PubMed ID: 7535320
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Astrocyte subtypes in the rat olfactory bulb: morphological heterogeneity and differential laminar distribution.
    Bailey MS; Shipley MT
    J Comp Neurol; 1993 Feb; 328(4):501-26. PubMed ID: 8429132
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Isoform-dependent immunolocalization of 14-3-3 proteins in developing rat cerebellum.
    Umahara T; Uchihara T; Nakamura A; Iwamoto T
    Brain Res; 2009 Feb; 1253():15-26. PubMed ID: 19070608
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Plasticity in the olfactory cortex: age-dependent effects of deafferentation.
    Friedman B; Price JL
    J Comp Neurol; 1986 Apr; 246(1):1-19. PubMed ID: 3700712
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evidence for an axonal localization of the type 2 corticotropin-releasing factor receptor during postnatal development of the mouse cerebellum.
    Lee KH; Bishop GA; Tian JB; King JS
    Exp Neurol; 2004 May; 187(1):11-22. PubMed ID: 15081583
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Localization and regulation of low affinity nerve growth factor receptor expression in the rat olfactory system during development and regeneration.
    Gong Q; Bailey MS; Pixley SK; Ennis M; Liu W; Shipley MT
    J Comp Neurol; 1994 Jun; 344(3):336-48. PubMed ID: 8063958
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Some quantitative histological observations on the growing cerebellum of the albino rat. (Dimensions of the cortical layers and white core and relative number of Purkinje cells).
    Papadopoulos NJ; Albert EN; Sherif MF
    Anat Anz; 1981; 150(5):485-97. PubMed ID: 7342795
    [TBL] [Abstract][Full Text] [Related]  

  • 16. RhoE is spatiotemporally regulated in the postnatal mouse CNS.
    Ballester-Lurbe B; Poch E; Mocholí E; Guasch RM; Pérez-Roger I; Terrado J
    Neuroscience; 2009 Oct; 163(2):586-93. PubMed ID: 19589369
    [TBL] [Abstract][Full Text] [Related]  

  • 17. LHRH and catecholamine neuronal systems in the olfactory bulb of the mouse.
    Rosser AE; Hökfelt T; Goldstein M
    J Comp Neurol; 1986 Aug; 250(3):352-63. PubMed ID: 2875086
    [TBL] [Abstract][Full Text] [Related]  

  • 18. NADPH-diaphorase histochemistry in the postnatal mouse cerebellum suggests specific developmental functions for nitric oxide.
    Brüning G
    J Neurosci Res; 1993 Dec; 36(5):580-7. PubMed ID: 7511699
    [TBL] [Abstract][Full Text] [Related]  

  • 19. B2 bradykinin receptor immunoreactivity in rat brain.
    Chen EY; Emerich DF; Bartus RT; Kordower JH
    J Comp Neurol; 2000 Nov; 427(1):1-18. PubMed ID: 11042588
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transmembrane protein 50b (C21orf4), a candidate for Down syndrome neurophenotypes, encodes an intracellular membrane protein expressed in the rodent brain.
    Moldrich RX; Lainé J; Visel A; Beart PM; Laffaire J; Rossier J; Potier MC
    Neuroscience; 2008 Jul; 154(4):1255-66. PubMed ID: 18541381
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.