These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 27085901)

  • 1. Influence of metabolic dysfunction on cardiac mechanics in decompensated hypertrophy and heart failure.
    Tewari SG; Bugenhagen SM; Vinnakota KC; Rice JJ; Janssen PML; Beard DA
    J Mol Cell Cardiol; 2016 May; 94():162-175. PubMed ID: 27085901
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Myosin Activator Omecamtiv Mecarbil Increases Myocardial Oxygen Consumption and Impairs Cardiac Efficiency Mediated by Resting Myosin ATPase Activity.
    Bakkehaug JP; Kildal AB; Engstad ET; Boardman N; Næsheim T; Rønning L; Aasum E; Larsen TS; Myrmel T; How OJ
    Circ Heart Fail; 2015 Jul; 8(4):766-75. PubMed ID: 26025342
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impaired Myocardial Energetics Causes Mechanical Dysfunction in Decompensated Failing Hearts.
    Lopez R; Marzban B; Gao X; Lauinger E; Van den Bergh F; Whitesall SE; Converso-Baran K; Burant CF; Michele DE; Beard DA
    Function (Oxf); 2020; 1(2):zqaa018. PubMed ID: 33074265
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Subcellular remodeling as a viable target for the treatment of congestive heart failure.
    Dhalla NS; Dent MR; Tappia PS; Sethi R; Barta J; Goyal RK
    J Cardiovasc Pharmacol Ther; 2006 Mar; 11(1):31-45. PubMed ID: 16703218
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Subcellular remodelling may induce cardiac dysfunction in congestive heart failure.
    Dhalla NS; Saini-Chohan HK; Rodriguez-Leyva D; Elimban V; Dent MR; Tappia PS
    Cardiovasc Res; 2009 Feb; 81(3):429-38. PubMed ID: 18852252
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of subcellular remodeling in cardiac dysfunction due to congestive heart failure.
    Babick AP; Dhalla NS
    Med Princ Pract; 2007; 16(2):81-9. PubMed ID: 17303941
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cardiocirculatory dynamics in the normal and failing heart.
    Zelis R; Flaim SF; Liedtke AJ; Nellis SH
    Annu Rev Physiol; 1981; 43():455-76. PubMed ID: 6452090
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cardiac insulin-resistance and decreased mitochondrial energy production precede the development of systolic heart failure after pressure-overload hypertrophy.
    Zhang L; Jaswal JS; Ussher JR; Sankaralingam S; Wagg C; Zaugg M; Lopaschuk GD
    Circ Heart Fail; 2013 Sep; 6(5):1039-48. PubMed ID: 23861485
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ginseng reverses established cardiomyocyte hypertrophy and postmyocardial infarction-induced hypertrophy and heart failure.
    Moey M; Gan XT; Huang CX; Rajapurohitam V; Martínez-Abundis E; Lui EM; Karmazyn M
    Circ Heart Fail; 2012 Jul; 5(4):504-14. PubMed ID: 22576957
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The myocardium in congestive heart failure.
    Katz AM
    Am J Cardiol; 1989 Jan; 63(2):12A-16A. PubMed ID: 2521266
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Direct Myosin Activation by Omecamtiv Mecarbil for Heart Failure with Reduced Ejection Fraction.
    Psotka MA; Teerlink JR
    Handb Exp Pharmacol; 2017; 243():465-490. PubMed ID: 28315072
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Control of oxidative metabolism in volume-overloaded rat hearts: effect of propionyl-L-carnitine.
    El Alaoui-Talibi Z; Guendouz A; Moravec M; Moravec J
    Am J Physiol; 1997 Apr; 272(4 Pt 2):H1615-24. PubMed ID: 9139943
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Congestive heart failure--pathophysiology and medical treatment.
    Remme WJ
    J Cardiovasc Pharmacol; 1986; 8 Suppl 1():S36-52. PubMed ID: 2422492
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Heart spotting.
    el Azzouzi H; De Windt LJ
    Basic Res Cardiol; 2008 May; 103(3):228-31. PubMed ID: 18274799
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Agonist-induced hypertrophy and diastolic dysfunction are associated with selective reduction in glucose oxidation: a metabolic contribution to heart failure with normal ejection fraction.
    Mori J; Basu R; McLean BA; Das SK; Zhang L; Patel VB; Wagg CS; Kassiri Z; Lopaschuk GD; Oudit GY
    Circ Heart Fail; 2012 Jul; 5(4):493-503. PubMed ID: 22705769
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metabolic reprogramming via PPARα signaling in cardiac hypertrophy and failure: From metabolomics to epigenetics.
    Warren JS; Oka SI; Zablocki D; Sadoshima J
    Am J Physiol Heart Circ Physiol; 2017 Sep; 313(3):H584-H596. PubMed ID: 28646024
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improvement of cardiac function by a cardiac Myosin activator in conscious dogs with systolic heart failure.
    Shen YT; Malik FI; Zhao X; Depre C; Dhar SK; Abarzúa P; Morgans DJ; Vatner SF
    Circ Heart Fail; 2010 Jul; 3(4):522-7. PubMed ID: 20498236
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Myocardial metabolic changes in cardiac hypertrophy and heart failure.
    Fizelova A; Fizel A
    Recent Adv Stud Cardiac Struct Metab; 1972; 1():200-12. PubMed ID: 4283436
    [No Abstract]   [Full Text] [Related]  

  • 19. Induction of heart failure by minimally invasive aortic constriction in mice: reduced peroxisome proliferator-activated receptor γ coactivator levels and mitochondrial dysfunction.
    Faerber G; Barreto-Perreia F; Schoepe M; Gilsbach R; Schrepper A; Schwarzer M; Mohr FW; Hein L; Doenst T
    J Thorac Cardiovasc Surg; 2011 Feb; 141(2):492-500, 500.e1. PubMed ID: 20447656
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metabolic remodelling of the failing heart: beneficial or detrimental?
    van Bilsen M; van Nieuwenhoven FA; van der Vusse GJ
    Cardiovasc Res; 2009 Feb; 81(3):420-8. PubMed ID: 18854380
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.