These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
148 related articles for article (PubMed ID: 27086071)
1. Environmental levels of Zn do not protect embryos from Cu toxicity in three species of amphibians. Weir SM; Flynn RW; Scott DE; Yu S; Lance SL Environ Pollut; 2016 Jul; 214():161-168. PubMed ID: 27086071 [TBL] [Abstract][Full Text] [Related]
2. Evidence for a metal disease refuge: The amphibian-killing fungus (Batrachochytrium dendrobatidis) is inhibited by environmentally-relevant concentrations of metals tolerated by amphibians. Esmaeilbeigi M; P Duncan R; J Kefford B; Ezaz T; Clulow S Environ Res; 2024 Nov; 261():119752. PubMed ID: 39117053 [TBL] [Abstract][Full Text] [Related]
3. Predicting the combined toxicity of binary metal mixtures (Cu-Ni and Zn-Ni) to wheat. Wang X; Luo X; Wang Q; Liu Y; Naidu R Ecotoxicol Environ Saf; 2020 Dec; 205():111334. PubMed ID: 32961486 [TBL] [Abstract][Full Text] [Related]
4. Modeling interactions and toxicity of Cu-Zn mixtures to zebrafish larvae. Gao Y; Feng J; Wang C; Zhu L Ecotoxicol Environ Saf; 2017 Apr; 138():146-153. PubMed ID: 28043033 [TBL] [Abstract][Full Text] [Related]
5. Extended biotic ligand model for predicting combined Cu-Zn toxicity to wheat (Triticum aestivum L.): Incorporating the effects of concentration ratio, major cations and pH. Wang X; Ji D; Chen X; Ma Y; Yang J; Ma J; Li X Environ Pollut; 2017 Nov; 230():210-217. PubMed ID: 28688297 [TBL] [Abstract][Full Text] [Related]
6. Copper-zinc coergisms and metal toxicity at predefined ratio concentrations: Predictions based on synergistic ratio model. Obinna Obiakor M; Damian Ezeonyejiaku C Ecotoxicol Environ Saf; 2015 Jul; 117():149-54. PubMed ID: 25863353 [TBL] [Abstract][Full Text] [Related]
7. Toxicity of metal mixtures to a tropical freshwater alga (Chlorella sp): the effect of interactions between copper, cadmium, and zinc on metal cell binding and uptake. Franklin NM; Stauber JL; Lim RP; Petocz P Environ Toxicol Chem; 2002 Nov; 21(11):2412-22. PubMed ID: 12389921 [TBL] [Abstract][Full Text] [Related]
8. Lethal and sublethal measures of chronic copper toxicity in the eastern narrowmouth toad, Gastrophryne carolinensis. Flynn RW; Scott DE; Kuhne W; Soteropoulos D; Lance SL Environ Toxicol Chem; 2015 Mar; 34(3):575-82. PubMed ID: 25475581 [TBL] [Abstract][Full Text] [Related]
9. Chronic toxicity of binary-metal mixtures of cadmium and zinc to Daphnia magna. Pérez E; Hoang TC Environ Toxicol Chem; 2017 Oct; 36(10):2739-2749. PubMed ID: 28430390 [TBL] [Abstract][Full Text] [Related]
10. Mixture toxicity and interactions of copper, nickel, cadmium, and zinc to barley at low effect levels: Something from nothing? Versieren L; Evers S; De Schamphelaere K; Blust R; Smolders E Environ Toxicol Chem; 2016 Oct; 35(10):2483-2492. PubMed ID: 26800646 [TBL] [Abstract][Full Text] [Related]
11. A test of the additivity of acute toxicity of binary-metal mixtures of ni with Cd, Cu, and Zn to Daphnia magna, using the inflection point of the concentration-response curves. Traudt EM; Ranville JF; Smith SA; Meyer JS Environ Toxicol Chem; 2016 Jul; 35(7):1843-51. PubMed ID: 26681657 [TBL] [Abstract][Full Text] [Related]
12. Combined toxicity of heavy metal mixtures in liver cells. Lin X; Gu Y; Zhou Q; Mao G; Zou B; Zhao J J Appl Toxicol; 2016 Sep; 36(9):1163-72. PubMed ID: 26865462 [TBL] [Abstract][Full Text] [Related]
13. Interactive toxicity of Ni, Zn, Cu, and Cd on Daphnia magna at lethal and sub-lethal concentrations. Lari E; Gauthier P; Mohaddes E; Pyle GG J Hazard Mater; 2017 Jul; 334():21-28. PubMed ID: 28380397 [TBL] [Abstract][Full Text] [Related]
14. Developmental toxicity in rare minnow (Gobiocypris rarus) embryos exposed to Cu, Zn and Cd. Zhu B; Liu L; Li DL; Ling F; Wang GX Ecotoxicol Environ Saf; 2014 Jun; 104():269-77. PubMed ID: 24726939 [TBL] [Abstract][Full Text] [Related]
15. Synergistic effects of copper and butylic ester of 2,4-Dichlorophenoxyacetic acid (Esternon Ultra) on amphibian embryos. Perez-Coll CS; Herkovits J Int J Environ Res Public Health; 2006 Dec; 3(4):343-7. PubMed ID: 17159276 [TBL] [Abstract][Full Text] [Related]
16. Comparison of chronic mixture toxicity of nickel-zinc-copper and nickel-zinc-copper-cadmium mixtures between Ceriodaphnia dubia and Pseudokirchneriella subcapitata. Nys C; Van Regenmortel T; Janssen CR; Blust R; Smolders E; De Schamphelaere KA Environ Toxicol Chem; 2017 Apr; 36(4):1056-1066. PubMed ID: 27669674 [TBL] [Abstract][Full Text] [Related]
17. Responses of aquatic insects to Cu and Zn in stream microcosms: understanding differences between single species tests and field responses. Clements WH; Cadmus P; Brinkman SF Environ Sci Technol; 2013 Jul; 47(13):7506-13. PubMed ID: 23734565 [TBL] [Abstract][Full Text] [Related]
18. Behavioural and biochemical responses to metals tested alone or in mixture (Cd-Cu-Ni-Pb-Zn) in Gammarus fossarum: From a multi-biomarker approach to modelling metal mixture toxicity. Lebrun JD; Uher E; Fechner LC Aquat Toxicol; 2017 Dec; 193():160-167. PubMed ID: 29096089 [TBL] [Abstract][Full Text] [Related]
19. Species- and stage-specific differences in trace element tissue concentrations in amphibians: implications for the disposal of coal-combustion wastes. Roe JH; Hopkins WA; Jackson BP Environ Pollut; 2005 Jul; 136(2):353-63. PubMed ID: 15840543 [TBL] [Abstract][Full Text] [Related]
20. Time-response relationships for the accumulation of Cu, Ni and Zn by seven-spotted ladybirds (Coccinella septempunctata L.) under conditions of single and combined metal exposure. Green ID; Walmsley K Chemosphere; 2013 Sep; 93(1):184-9. PubMed ID: 23810517 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]