BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

615 related articles for article (PubMed ID: 27086202)

  • 1. Powder-based 3D printing for bone tissue engineering.
    Brunello G; Sivolella S; Meneghello R; Ferroni L; Gardin C; Piattelli A; Zavan B; Bressan E
    Biotechnol Adv; 2016; 34(5):740-753. PubMed ID: 27086202
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Advances in additive manufacturing for bone tissue engineering scaffolds.
    Moreno Madrid AP; Vrech SM; Sanchez MA; Rodriguez AP
    Mater Sci Eng C Mater Biol Appl; 2019 Jul; 100():631-644. PubMed ID: 30948100
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Three-dimensional (3D) printed scaffold and material selection for bone repair.
    Zhang L; Yang G; Johnson BN; Jia X
    Acta Biomater; 2019 Jan; 84():16-33. PubMed ID: 30481607
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rapid prototyping technology and its application in bone tissue engineering.
    Yuan B; Zhou SY; Chen XS
    J Zhejiang Univ Sci B; 2017 Apr.; 18(4):303-315. PubMed ID: 28378568
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Solvent-cast 3D printing of magnesium scaffolds.
    Dong J; Li Y; Lin P; Leeflang MA; van Asperen S; Yu K; Tümer N; Norder B; Zadpoor AA; Zhou J
    Acta Biomater; 2020 Sep; 114():497-514. PubMed ID: 32771594
    [TBL] [Abstract][Full Text] [Related]  

  • 6. New depowdering-friendly designs for three-dimensional printing of calcium phosphate bone substitutes.
    Butscher A; Bohner M; Doebelin N; Hofmann S; Müller R
    Acta Biomater; 2013 Nov; 9(11):9149-58. PubMed ID: 23891808
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [RESEARCH PROGRESS OF THREE-DIMENSIONAL PRINTING POROUS SCAFFOLDS FOR BONE TISSUE ENGINEERING].
    Wu T; Yang C
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2016 Apr; 30(4):509-13. PubMed ID: 27411283
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Additive manufacturing techniques for the production of tissue engineering constructs.
    Mota C; Puppi D; Chiellini F; Chiellini E
    J Tissue Eng Regen Med; 2015 Mar; 9(3):174-90. PubMed ID: 23172792
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 3D Printing technology over a drug delivery for tissue engineering.
    Lee JW; Cho DW
    Curr Pharm Des; 2015; 21(12):1606-17. PubMed ID: 25594413
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Printability of calcium phosphate: calcium sulfate powders for the application of tissue engineered bone scaffolds using the 3D printing technique.
    Zhou Z; Buchanan F; Mitchell C; Dunne N
    Mater Sci Eng C Mater Biol Appl; 2014 May; 38():1-10. PubMed ID: 24656346
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 3D Printing of Micro- and Nanoscale Bone Substitutes: A Review on Technical and Translational Perspectives.
    Cheng L; Suresh K S; He H; Rajput RS; Feng Q; Ramesh S; Wang Y; Krishnan S; Ostrovidov S; Camci-Unal G; Ramalingam M
    Int J Nanomedicine; 2021; 16():4289-4319. PubMed ID: 34211272
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 3D-printing: an emerging and a revolutionary technology in pharmaceuticals.
    Singhvi G; Patil S; Girdhar V; Chellappan DK; Gupta G; Dua K
    Panminerva Med; 2018 Dec; 60(4):170-173. PubMed ID: 29856179
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Current state of fabrication technologies and materials for bone tissue engineering.
    Wubneh A; Tsekoura EK; Ayranci C; Uludağ H
    Acta Biomater; 2018 Oct; 80():1-30. PubMed ID: 30248515
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fabrication and evaluation of 3D printed BCP scaffolds reinforced with ZrO
    Sa MW; Nguyen BB; Moriarty RA; Kamalitdinov T; Fisher JP; Kim JY
    Biotechnol Bioeng; 2018 Apr; 115(4):989-999. PubMed ID: 29240243
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 3D Printing of Calcium Phosphate Ceramics for Bone Tissue Engineering and Drug Delivery.
    Trombetta R; Inzana JA; Schwarz EM; Kates SL; Awad HA
    Ann Biomed Eng; 2017 Jan; 45(1):23-44. PubMed ID: 27324800
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rapid manufacturing techniques for the tissue engineering of human heart valves.
    Lueders C; Jastram B; Hetzer R; Schwandt H
    Eur J Cardiothorac Surg; 2014 Oct; 46(4):593-601. PubMed ID: 25063052
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 3D printed porous ceramic scaffolds for bone tissue engineering: a review.
    Wen Y; Xun S; Haoye M; Baichuan S; Peng C; Xuejian L; Kaihong Z; Xuan Y; Jiang P; Shibi L
    Biomater Sci; 2017 Aug; 5(9):1690-1698. PubMed ID: 28686244
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 3D printing of porous hydroxyapatite scaffolds intended for use in bone tissue engineering applications.
    Cox SC; Thornby JA; Gibbons GJ; Williams MA; Mallick KK
    Mater Sci Eng C Mater Biol Appl; 2015 Feb; 47():237-47. PubMed ID: 25492194
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Study on the Mechanical Properties of Three-Dimensional Directly Binding Hydroxyapatite Powder.
    Wang Y; Li X; Wei Q; Yang M; Wei S
    Cell Biochem Biophys; 2015 May; 72(1):289-95. PubMed ID: 25556069
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Advances in Translational 3D Printing for Cartilage, Bone, and Osteochondral Tissue Engineering.
    Wang S; Zhao S; Yu J; Gu Z; Zhang Y
    Small; 2022 Sep; 18(36):e2201869. PubMed ID: 35713246
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 31.