These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
328 related articles for article (PubMed ID: 27086552)
1. Detachable Acoustofluidic System for Particle Separation via a Traveling Surface Acoustic Wave. Ma Z; Collins DJ; Ai Y Anal Chem; 2016 May; 88(10):5316-23. PubMed ID: 27086552 [TBL] [Abstract][Full Text] [Related]
2. A two-chip acoustofluidic particle manipulation platform with a detachable and reusable surface acoustic wave device. Qian J; Ren J; Liu Y; Lam RHW; Lee JE Analyst; 2020 Nov; 145(23):7752-7758. PubMed ID: 33001065 [TBL] [Abstract][Full Text] [Related]
3. Surface acoustic wave induced particle manipulation in a PDMS channel--principle concepts for continuous flow applications. Johansson L; Enlund J; Johansson S; Katardjiev I; Yantchev V Biomed Microdevices; 2012 Apr; 14(2):279-89. PubMed ID: 22076383 [TBL] [Abstract][Full Text] [Related]
4. Effective cell trapping using PDMS microspheres in an acoustofluidic chip. Yin D; Xu G; Wang M; Shen M; Xu T; Zhu X; Shi X Colloids Surf B Biointerfaces; 2017 Sep; 157():347-354. PubMed ID: 28622655 [TBL] [Abstract][Full Text] [Related]
5. Continuous separation of particles in a PDMS microfluidic channel via travelling surface acoustic waves (TSAW). Destgeer G; Lee KH; Jung JH; Alazzam A; Sung HJ Lab Chip; 2013 Nov; 13(21):4210-6. PubMed ID: 23982077 [TBL] [Abstract][Full Text] [Related]
6. A disposable acoustofluidic chip for nano/microparticle separation using unidirectional acoustic transducers. Zhao S; Wu M; Yang S; Wu Y; Gu Y; Chen C; Ye J; Xie Z; Tian Z; Bachman H; Huang PH; Xia J; Zhang P; Zhang H; Huang TJ Lab Chip; 2020 Apr; 20(7):1298-1308. PubMed ID: 32195522 [TBL] [Abstract][Full Text] [Related]
7. The complexity of surface acoustic wave fields used for microfluidic applications. Weser R; Winkler A; Weihnacht M; Menzel S; Schmidt H Ultrasonics; 2020 Aug; 106():106160. PubMed ID: 32334142 [TBL] [Abstract][Full Text] [Related]
8. A Pumpless Acoustofluidic Platform for Size-Selective Concentration and Separation of Microparticles. Ahmed H; Destgeer G; Park J; Jung JH; Ahmad R; Park K; Sung HJ Anal Chem; 2017 Dec; 89(24):13575-13581. PubMed ID: 29156880 [TBL] [Abstract][Full Text] [Related]
9. Microfluidic acoustic sawtooth metasurfaces for patterning and separation using traveling surface acoustic waves. Xu M; Lee PVS; Collins DJ Lab Chip; 2021 Dec; 22(1):90-99. PubMed ID: 34860222 [TBL] [Abstract][Full Text] [Related]
16. A Novel Perturbed Spiral Sheathless Chip for Particle Separation Based on Traveling Surface Acoustic Waves (TSAW). Ji M; Liu Y; Duan J; Zang W; Wang Y; Qu Z; Zhang B Biosensors (Basel); 2022 May; 12(5):. PubMed ID: 35624627 [TBL] [Abstract][Full Text] [Related]
17. Self-Aligned Acoustofluidic Particle Focusing and Patterning in Microfluidic Channels from Channel-Based Acoustic Waveguides. Collins DJ; O'Rorke R; Devendran C; Ma Z; Han J; Neild A; Ai Y Phys Rev Lett; 2018 Feb; 120(7):074502. PubMed ID: 29542954 [TBL] [Abstract][Full Text] [Related]
18. Acoustofluidic Separation of Proteins Using Aptamer-Functionalized Microparticles. Afzal M; Park J; Jeon JS; Akmal M; Yoon TS; Sung HJ Anal Chem; 2021 Jun; 93(23):8309-8317. PubMed ID: 34075739 [TBL] [Abstract][Full Text] [Related]
19. Vertical Hydrodynamic Focusing and Continuous Acoustofluidic Separation of Particles via Upward Migration. Ahmed H; Destgeer G; Park J; Jung JH; Sung HJ Adv Sci (Weinh); 2018 Feb; 5(2):1700285. PubMed ID: 29619294 [TBL] [Abstract][Full Text] [Related]
20. Fabrication and Operation of Acoustofluidic Devices Supporting Bulk Acoustic Standing Waves for Sheathless Focusing of Particles. Shields CW; Cruz DF; Ohiri KA; Yellen BB; Lopez GP J Vis Exp; 2016 Mar; (109):. PubMed ID: 27022681 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]